Elliptic eigenvalue problems with highly discontinuous nonlinearities
Author:
Salvatore A. Marano
Journal:
Proc. Amer. Math. Soc. 125 (1997), 29532961
MSC (1991):
Primary 35J65, 35B30, 35R70
MathSciNet review:
1402873
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: For a family of elliptic eigenvalue problems with highly discontinuous nonlinearities, the existence of unbounded continua of positive solutions containing (0,0) is established by using techniques and results from setvalued analysis. Some special cases are then presented and discussed.
 [1]
Robert
A. Adams, Sobolev spaces, Academic Press [A subsidiary of
Harcourt Brace Jovanovich, Publishers], New YorkLondon, 1975. Pure and
Applied Mathematics, Vol. 65. MR 0450957
(56 #9247)
 [2]
Herbert
Amann, Fixed point equations and nonlinear eigenvalue problems in
ordered Banach spaces, SIAM Rev. 18 (1976),
no. 4, 620–709. MR 0415432
(54 #3519)
 [3]
A.
Ambrosetti, M.
Calahorrano, and F.
Dobarro, Global branching for discontinuous problems, Comment.
Math. Univ. Carolin. 31 (1990), no. 2, 213–222.
MR
1077891 (91m:35229)
 [4]
Jürgen
Appell, Espedito
De Pascale, Nguy\cftil{e}n
H\cfgrv{o}ng Thái, and Petr
P. Zabreĭko, Multivalued superpositions,
Dissertationes Math. (Rozprawy Mat.) 345 (1995), 97. MR 1354934
(96h:47061)
 [5]
M. Badiale and G. Tarantello, Existence and multiplicity results for elliptic problems with critical growth and discontinuous nonlinearities, Nonlinear Anal., to appear.
 [6]
G. Bonanno and S.A. Marano, Positive solutions of elliptic equations with discontinuous nonlinearities, Topol. Methods Nonlinear Anal. 8 (1996), to appear.
 [7]
Kung
Ching Chang, Free boundary problems and the setvalued
mappings, J. Differential Equations 49 (1983),
no. 1, 1–28. MR 704263
(84h:35172), http://dx.doi.org/10.1016/00220396(83)900189
 [8]
Filippo
Chiarenza, Michele
Frasca, and Placido
Longo, 𝑊^{2,𝑝}solvability of
the Dirichlet problem for nondivergence elliptic equations with VMO
coefficients, Trans. Amer. Math. Soc.
336 (1993), no. 2,
841–853. MR 1088476
(93f:35232), http://dx.doi.org/10.1090/S00029947199310884761
 [9]
Ennio
De Giorgi, Giuseppe
Buttazzo, and Gianni
Dal Maso, On the lower semicontinuity of certain integral
functionals, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.
(8) 74 (1983), no. 5, 274–282 (English, with
Italian summary). MR 758347
(87a:49019)
 [10]
David
Gilbarg and Neil
S. Trudinger, Elliptic partial differential equations of second
order, 2nd ed., Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], vol. 224,
SpringerVerlag, Berlin, 1983. MR 737190
(86c:35035)
 [11]
Seppo
Heikkilä and V.
Lakshmikantham, Monotone iterative techniques for discontinuous
nonlinear differential equations, Monographs and Textbooks in Pure and
Applied Mathematics, vol. 181, Marcel Dekker, Inc., New York, 1994. MR 1280028
(95d:34002)
 [12]
C.
J. Himmelberg, Measurable relations, Fund. Math.
87 (1975), 53–72. MR 0367142
(51 #3384)
 [13]
Hendrik
J. Kuiper, On positive solutions of nonlinear elliptic eigenvalue
problems, Rend. Circ. Mat. Palermo (2) 20 (1971),
113–138 (1972). MR 0328338
(48 #6680)
 [14]
Daniela
Lupo, A bifurcation result for a Dirichlet problem with
discontinuous nonlinearity, Rend. Circ. Mat. Palermo (2)
38 (1989), no. 2, 305–318 (English, with
Italian summary). MR 1029717
(91a:35026), http://dx.doi.org/10.1007/BF02844002
 [15]
Salvatore
A. Marano, Elliptic boundaryvalue problems with discontinuous
nonlinearities, SetValued Anal. 3 (1995),
no. 2, 167–180. MR 1343482
(96j:35079), http://dx.doi.org/10.1007/BF01038598
 [16]
S.A. Marano, Implicit elliptic boundaryvalue problems with discontinuous nonlinearities, SetValued Anal. 4 (1996), 287300. CMP 97:02
 [17]
I.
Massabò and C.
A. Stuart, Elliptic eigenvalue problems with discontinuous
nonlinearities, J. Math. Anal. Appl. 66 (1978),
no. 2, 261–281. MR 515891
(80f:35102), http://dx.doi.org/10.1016/0022247X(78)902317
 [18]
I.
Massabò, Positive eigenvalues for elliptic equations with
discontinuous nonlinearities, Boll. Un. Mat. Ital. B (5)
15 (1978), no. 3, 814–827 (English, with
Italian summary). MR 524102
(80a:35051)
 [19]
Dian
K. Palagachev, Quasilinear elliptic equations with
VMO coefficients, Trans. Amer. Math. Soc.
347 (1995), no. 7,
2481–2493. MR 1308019
(95k:35083), http://dx.doi.org/10.1090/S00029947199513080196
 [20]
D.K. Palagachev, private communication.
 [21]
S.I. Pohozaev, Eigenfunctions of the equation , Soviet Math. Dokl. 6 (1965), 14081411.
 [22]
T.
Pruszko, Topological degree methods in multivalued boundary value
problems, Nonlinear Anal. 5 (1981), no. 9,
959–973. MR
633011 (83d:34034), http://dx.doi.org/10.1016/0362546X(81)900560
 [23]
Paul
H. Rabinowitz, Some global results for nonlinear eigenvalue
problems, J. Functional Analysis 7 (1971),
487–513. MR 0301587
(46 #745)
 [24]
Paul
H. Rabinowitz, A global theorem for nonlinear eigenvalue problems
and applicatons, Contributions to nonlinear functional analysis (Proc.
Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971)
Academic Press, New York, 1971, pp. 11–36. MR 0390858
(52 #11681)
 [1]
 R.A. Adams: Sobolev Spaces, Academic Press, New York, 1975. MR 56:9247
 [2]
 H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620709. MR 54:3519
 [3]
 A. Ambrosetti, M. Calahorrano, and F. Dobarro, Global branching for discontinuous problems, Comment. Math. Univ. Carolin. 31 (1990), 213222. MR 91m:35229
 [4]
 J. Appell, E. De Pascale, H.T. Nguyêñ, and P.P. Zabreiko, Multivalued superpositions, Dissertationes Math. 345 (1995), 197. MR 96h:47061
 [5]
 M. Badiale and G. Tarantello, Existence and multiplicity results for elliptic problems with critical growth and discontinuous nonlinearities, Nonlinear Anal., to appear.
 [6]
 G. Bonanno and S.A. Marano, Positive solutions of elliptic equations with discontinuous nonlinearities, Topol. Methods Nonlinear Anal. 8 (1996), to appear.
 [7]
 K.C. Chang, Free boundary problems and the setvalued mappings, J. Differential Equations 49 (1983), 128. MR 84h:35172
 [8]
 F. Chiarenza, M. Frasca, and P. Longo, solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc. 336 (1993), 841853. MR 93f:35232
 [9]
 E. De Giorgi, G. Buttazzo, and G. Dal Maso, On the lower semicontinuity of certain integral functionals, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (8) Mat. Appl. 74 (1983), 274282. MR 87a:49019
 [10]
 D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edn., SpringerVerlag, Berlin, 1983. MR 86c:35035
 [11]
 S. Heikkilä and V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, Marcel Dekker, New York, 1994. MR 95d:34002
 [12]
 C.J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 5372. MR 51:3384
 [13]
 H.J. Kuiper, On positive solutions of nonlinear elliptic eigenvalue problems, Rend. Circ. Mat. Palermo (2) 20 (1971), 113138. MR 48:6680
 [14]
 D. Lupo, A bifurcation result for a Dirichlet problem with discontinuous nonlinearity, Rend. Circ. Mat. Palermo (2) 38 (1989), 305318. MR 91a:35026
 [15]
 S.A. Marano, Elliptic boundaryvalue problems with discontinuous nonlinearities, SetValued Anal. 3 (1995), 167180. MR 96j:35079
 [16]
 S.A. Marano, Implicit elliptic boundaryvalue problems with discontinuous nonlinearities, SetValued Anal. 4 (1996), 287300. CMP 97:02
 [17]
 I. Massabò and C.A. Stuart, Elliptic eigenvalue problems with discontinuous nonlinearities, J. Math. Anal. Appl. 66 (1978), 261281. MR 80f:35102
 [18]
 I. Massabò, Positive eigenvalues for elliptic equations with discontinuous nonlinearities, Boll. Un. Mat. Ital. B (5) 15 (1978), 814827. MR 80a:35051
 [19]
 D.K. Palagachev, Quasilinear elliptic equations with VMO coefficients, Trans. Amer. Math. Soc. 347 (1995), 24812493. MR 95k:35083
 [20]
 D.K. Palagachev, private communication.
 [21]
 S.I. Pohozaev, Eigenfunctions of the equation , Soviet Math. Dokl. 6 (1965), 14081411.
 [22]
 T. Pruszko, Topological degree methods in multivalued boundary value problems, Nonlinear Anal. 5 (1981), 959973. MR 83d:34034
 [23]
 P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487513. MR 46:745
 [24]
 P.H. Rabinowitz, A global theorem for nonlinear eigenvalue problems and applications, in E. Zarantonello (ed.), Contributions to Nonlinear Functional Analysis, Academic Press, New York, 1971, pp. 1136. MR 52:11681
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
35J65,
35B30,
35R70
Retrieve articles in all journals
with MSC (1991):
35J65,
35B30,
35R70
Additional Information
Salvatore A. Marano
Affiliation:
Department of Mathematics, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
Email:
marano@dipmat.unict.it
DOI:
http://dx.doi.org/10.1090/S0002993997039695
PII:
S 00029939(97)039695
Keywords:
Elliptic eigenvalue problems,
discontinuous nonlinearities,
elliptic differential inclusions,
unbounded continuum of solutions
Received by editor(s):
March 15, 1996
Received by editor(s) in revised form:
May 7, 1996
Additional Notes:
Work performed under the auspices of G.N.A.F.A. of C.N.R. and partially supported by M.U.R.S.T. of Italy (40%, 1994).
Communicated by:
Palle E. T. Jorgensen
Article copyright:
© Copyright 1997
American Mathematical Society
