Integration of the intertwining operator

for -harmonic polynomials

associated to reflection groups

Author:
Yuan Xu

Journal:
Proc. Amer. Math. Soc. **125** (1997), 2963-2973

MSC (1991):
Primary 33C50, 33C45, 42C10

MathSciNet review:
1402890

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the intertwining operator with respect to the reflection invariant measure on the unit sphere in Dunkl's theory on spherical -harmonics associated with reflection groups. Although a closed form of is unknown in general, we prove that

where is the unit ball of and is a constant. The result is used to show that the expansion of a continuous function as Fourier series in -harmonics with respect to is uniformly Cesáro summable on the sphere if , provided that the intertwining operator is positive.

**1.**Richard Askey,*Orthogonal polynomials and special functions*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975. MR**0481145****2.**Charles F. Dunkl,*Reflection groups and orthogonal polynomials on the sphere*, Math. Z.**197**(1988), no. 1, 33–60. MR**917849**, 10.1007/BF01161629**3.**Charles F. Dunkl,*Differential-difference operators associated to reflection groups*, Trans. Amer. Math. Soc.**311**(1989), no. 1, 167–183. MR**951883**, 10.1090/S0002-9947-1989-0951883-8**4.**Charles F. Dunkl,*Integral kernels with reflection group invariance*, Canad. J. Math.**43**(1991), no. 6, 1213–1227. MR**1145585**, 10.4153/CJM-1991-069-8**5.**C. Dunkl,*Intertwining operators associated to the group*, Trans. Amer. Math. Soc.**347**(1995), 3347-3374. CMP**95:14****6.**Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi,*Higher transcendental functions. Vol. II*, Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981. Based on notes left by Harry Bateman; Reprint of the 1953 original. MR**698780****7.**G. J. Heckman,*Hypergeometric and Spherical Functions*, Harmonic Analysis and Special Functions on Symmetric Spaces, Academic Press, San Diego, 1994.**8.**I. G. Macdonald,*Some conjectures for root systems*, SIAM J. Math. Anal.**13**(1982), no. 6, 988–1007. MR**674768**, 10.1137/0513070**9.**E. M. Opdam,*Some applications of hypergeometric shift operators*, Invent. Math.**98**(1989), no. 1, 1–18. MR**1010152**, 10.1007/BF01388841**10.**H. Szego,*Orthogonal polynomials*, 4th ed., Amer. Math. Soc. Colloq. Publ. vol.23, Providence, RI, 1975.**11.**Yuan Xu,*On multivariate orthogonal polynomials*, SIAM J. Math. Anal.**24**(1993), no. 3, 783–794. MR**1215438**, 10.1137/0524048**12.**Y. Xu,*Summability of Fourier orthogonal series for Jacobi weight on a ball in*(to appear).**13.**Y. Xu,*Orthogonal polynomials for a family of product weight functions on the spheres*, Canadian J. Math.**49**(1997), 175-192.**14.**A. Zygmund,*Trigonometric series: Vols. I, II*, Second edition, reprinted with corrections and some additions, Cambridge University Press, London-New York, 1968. MR**0236587**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
33C50,
33C45,
42C10

Retrieve articles in all journals with MSC (1991): 33C50, 33C45, 42C10

Additional Information

**Yuan Xu**

Affiliation:
Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222

Email:
yuan@math.uoregon.edu

DOI:
https://doi.org/10.1090/S0002-9939-97-03986-5

Keywords:
Orthogonal polynomials in several variables,
sphere,
$h$-harmonics,
reflection groups,
intertwining operator

Received by editor(s):
May 7, 1996

Additional Notes:
Supported by the National Science Foundation under Grant DMS-9500532

Communicated by:
Palle E. T. Jorgensen

Article copyright:
© Copyright 1997
American Mathematical Society