On the intersection property

of Dubrovin valuation rings

Author:
Zhao Yicai

Journal:
Proc. Amer. Math. Soc. **125** (1997), 2825-2830

MSC (1991):
Primary 16A40, 16A10

DOI:
https://doi.org/10.1090/S0002-9939-97-03987-7

MathSciNet review:
1402891

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that of the three axioms Gräter specified for his intersection property of Dubrovin valuation rings in central-simple algebras, the second and third axioms actually follow from the first.

**[AD]**J. H. Alajbegovic and N. I. Dubrovin,*Noncommutative Prüfer rings*, J. Algebra**135**(1990), 165-176. MR**92b:16019****[AS]**S. A. Amitsur and L. W. Small,*Prime ideals in PI-rings*, J. Algebra**62**(1980), 358-383. MR**81c:16027****[D1]**N. I. Dubrovin,*Noncommutative valuation rings*, Trudy Moskov. Mat. Obshch.**45**(1982), 265-280; English transl. in Trans. Moscow Math. Soc.**45**(1984), 273-287. MR**85d:16002****[D2]**N. I. Dubrovin,*Noncommutative valuation rings in simple finite-dimensional algebra over a field*, Mat. Sb.**123**(165) (1984), 496-509; English transl. in Math. USSR Sb.**51**(1985), 493-505. MR**85j:16020****[E]**O. Endler,*Valuation Theory*, Springer-Verlag, New York, 1972. MR**50:9847****[G1]**J. Gräter,*The Defektsatz for central simple algebras*, Trans. Amer. Math. Soc.**330**(1992), 823-843. MR**92f:16018****[G2]**J. Gräter,*Prime PI-rings in which finitely generated right ideals are principal*, Forum Math.**4**(1992), 447-463. MR**93i:16026****[K]**I. Kaplansky,*Commutative Rings*, The Univ. of Chicago Press 1970. MR**49:10674****[M1]**P. J. Morandi,*An approximation theorem for Dubrovin valuation rings*, Math. Zeit.**207**(1991), 71-82. MR**92g:16021****[M2]**P. J. Morandi,*Maximal orders over valuation rings*, J. Algebra**152**(1992), 313-341. MR**93k:16028****[M3]**P. J. Morandi,*Noncommutative Prüfer rings satisfying a polynomial identity*, J. Algebra**161**(1993), 324-341. MR**94k:16019****[R]**J. C. Robson,*Rings in which finitely generated right ideals are principal*, Proc. London Math. Soc.**17**(1967), 617-628. MR**36:200****[W]**A. R. Wadsworth,*Dubrovin valuation rings and Henselization*, Math. Ann.**283**(1989), 301-328. MR**90f:16009**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
16A40,
16A10

Retrieve articles in all journals with MSC (1991): 16A40, 16A10

Additional Information

**Zhao Yicai**

Affiliation:
Institute of Mathematics, Fudan University, Shanghai 200433, People’s Republic of China

DOI:
https://doi.org/10.1090/S0002-9939-97-03987-7

Received by editor(s):
December 18, 1995

Received by editor(s) in revised form:
March 29, 1996

Communicated by:
Ken Goodearl

Article copyright:
© Copyright 1997
American Mathematical Society