ON 'CLIFFORD'S THEOREM'
FOR PRIMITIVE FINITARY GROUPS

B. A. F. WEHRFRITZ

(Communicated by Ronald M. Solomon)

Abstract. Let \(V \) be an infinite-dimensional vector space over any division ring \(D \), and let \(G \) be an irreducible primitive subgroup of the finitary group \(\text{FGL}(V) \). We prove that every non-identity ascendant subgroup of \(G \) is also irreducible and primitive. For \(D \) a field, this was proved earlier by U. Meierfrankenfeld.

Let \(V \) be a left vector space over some division ring \(D \), and let \(G \) be an irreducible subgroup of the full finitary general linear group \(\text{FGL}(V) \) on \(V \). A subgroup \(H \) of a group \(G \) is ascendant if there is an ascending (possibly infinite) series

\[H = H_0 \leq H_1 \leq \cdots \leq H_\alpha \leq \cdots \leq H_\gamma = G \]

of subgroups of \(G \), each normal in its successor, joining \(H \) to \(G \). In [1], see 7.6, U. Meierfrankenfeld proved that if \(D \) is a field, then every ascendant subgroup \(H \) of \(G \) is completely reducible, the classical Clifford’s Theorem being the case where \(V \) is finite dimensional and \(H \) is normal in \(G \). Independently, and using a substantially different approach, the author derived the same conclusion for any division ring \(D \); see Prop. 9 of [5].

Meierfrankenfeld’s approach studies primitive groups first and the major step in his proof ([1], 7.4) is to show that, if \(D \) is a field, if \(\dim_D V \) is infinite and if \(G \) is also primitive with \(H \neq \langle 1 \rangle \), then \(H \) is irreducible and primitive. The author’s approach did not consider primitive groups separately. Thus two obvious questions arise. Does this same conclusion hold for any division ring \(D \), and if so, can it be obtained relatively quickly from the results of [5] without, for example, repeating and adapting as necessary the lengthy analysis in [1]? (Incidentally I assume that the latter is feasible, though I have not seriously tried to carry it out.) The object of this note is to show that the answer to both questions is yes.

Theorem. Let \(V \) be an infinite-dimensional left vector space over the division ring \(D \), and let \(H \) be a non-trivial ascendant subgroup of the irreducible primitive subgroup \(G \) of \(\text{FGL}(V) \). Then \(H \) too is irreducible and primitive.

Proof of the Theorem. We prove first that \(H \) is irreducible. By ‘Clifford’s Theorem’ (see [5], Prop. 9) the group \(H \) is completely reducible. Suppose \(H \) is reducible. Let \(\{ H_\alpha : 0 \leq \alpha \leq \gamma \} \) be an ascending series with \(H = H_0 \) and \(H_\gamma = G \). By hypothesis \(H \neq \langle 1 \rangle \); choose \(h \in H \setminus \langle 1 \rangle \) and set \(d = \dim_D [V, h] \). Then \(0 < d < \infty \). For each

Received by the editors April 25, 1996.
1991 Mathematics Subject Classification. Primary 20H25.
\(\alpha \leq \gamma \) set

\[
K_\alpha = \langle g \in H_\alpha : \dim_D[V, g] \leq d \rangle.
\]

Then \(K_\alpha \) is normal in \(H_\alpha \), indeed if \(\alpha < \gamma \) then \(K_\alpha \) is normal in \(H_{\alpha+1} \), and

\[
K = K_0 \leq K_1 \cdots K_\alpha \leq K_{\alpha+1} \cdots K_\gamma \leq G
\]
is an ascending series. Moreover \(h \in K \leq H \), so \(K \) is non-trivial and reducible.

Let \(U \) be an irreducible \(-K\) submodule of \(V \) and suppose \(\dim_D U > d \). If \(UK_\alpha = U \) and \(g \in K_{\alpha+1} \) with \(\dim_D[V, g] \leq d \), then \(g \) normalizes \(K_\alpha \), the modules \(U \) and \(Ug \) are both \(-K_{\alpha+1} \) irreducible, \(U \cap Ug \neq \{0\} \) and \(U = Ug \). Therefore \(UK_\alpha = U \). A simple induction yields that \(UK_\gamma = U \). But \(K_\gamma \) is normal in the primitive group \(G \), so \(K_\gamma \) is irreducible ([4], 3.1, and [5], Prop. 8). Consequently \(U = V \), a contradiction of the reducibility of \(K \). Therefore \(\dim_D U \leq d \). The same argument yields that \(V \) is a direct sum of irreducible \(-K_{\alpha} \) modules of dimension at most \(d \) for any \(\alpha \leq \gamma \) with \(K_\alpha \) reducible.

Choose \(\alpha \) and an irreducible \(-K_{\alpha} \) submodule \(U \) of \(V \) with \([U, K_\alpha] \neq \{0\} \), with \(\dim_D U \leq d \) and with \(\dim_D U \) maximal. By the above such \(\alpha \) and \(U \) exist. From all such choices pick \(\alpha \) and \(U \) such that the \(-K_\alpha \) homogeneous component \(W \) of \(V \) containing \(U \) has \(\dim_D W \) minimal; note that by finitariness \(\infty > \dim_D W \geq \dim_D U > 0 \).

Now suppose \(K_{\alpha+1} \) is reducible. If \(U_1 \) is an irreducible \(-K_{\alpha+1} \) submodule of \(V \) containing a copy of \(U \), then the choice of \(\alpha \) and \(U \) ensures that \(\dim_D U = \dim_D U_1 \) and that \(U \) and \(U_1 \) are isomorphic as \(-K_{\alpha} \) modules. It follows that \(W \) is a direct sum of \(-K_{\alpha+1} \) homogeneous components of \(V \) and the minimal choice of \(W \) yields that \(W \) is a \(-K_{\alpha+1} \) homogeneous component of \(V \). If \(\lambda \leq \gamma \) is a limit ordinal with \(W \) a \(-K_{\alpha+1} \) homogeneous component of \(V \) for all \(\beta \) with \(\alpha \leq \beta < \lambda \), then \(WK_\lambda = \bigcup_{\beta<\lambda} WK_\beta = W \), so \(K_\lambda \) is reducible, the \(-K_\beta \) irreducible submodules of \(W \) are \(-K_\beta \) irreducible and isomorphic for \(\alpha \leq \beta < \lambda \) (by the choice of \(\alpha \) and \(U \)), \(W \) is a sum of \(-K_\lambda \) homogeneous components of \(V \) and, by the minimal choice of \(W \), \(W \) is a \(-K_\lambda \) homogeneous component of \(V \). Since \(K_\gamma \) is irreducible ([4], 3.1 again), so \(WK_\gamma \neq W \) and the above yields the existence of \(\beta < \gamma \) with \(K_\beta \) reducible and \(K_{\beta+1} \) irreducible.

To simplify notation assume \(\beta = 0 \); that is, assume \(K_1 \) is irreducible. Let \(\alpha \geq 1 \), let \(L \neq \{1\} \) be a reducible normal subgroup of \(K_\alpha \) and let \(U \) be an irreducible \(-L \) submodule of \(V \) with \([U, L] \neq \{0\} \). (Note that such \(\alpha \) and \(L \) exist, for example \(1 \) and \(K_1 \).) By an argument we have seen before \(\dim_D U \leq d \). Let \(W \) be the \(-L \) homogeneous component of \(V \) containing \(U \). Choose \(\alpha \), \(L \) and \(U \) so firstly that \(\dim_D U \) is maximal and secondly that \(\dim_D W \) is minimal. For simplicity of notation assume \(\alpha = 1 \).

The \(-L \) homogeneous components of \(V \) form a system \(V = \bigoplus_{\omega \in \Omega} V_\omega \) of imprimitivity for \(K_1 \). Here \(\Omega \) is infinite and permuted transitively and finitarily by \(K_1 \) and the \(\dim_D V_\omega \) are finite. By definition \(K_1 \) is generated by elements with support of bounded dimension \((\leq d \) \). Consequently \(K_1|_{\Omega} \) is generated by elements with support of bounded cardinality (at most \(2d \)). It follows, in the terminology of P. M. Neumann ([3], p. 563), that \(K_1|_{\Omega} \) cannot be totally imprimitive and therefore must be almost primitive. Thus there is a \(K_1 \)-invariant congruence \(q \) on \(\Omega \) such that \(K_1|_{\Omega/q} \) is primitive and hence is either \(\text{Alt}(\Omega/q) \) or \(\text{FSym}(\Omega/q) \); see [3], 2.3. Moreover each \(\omega q = \{ \sigma \in \Omega : \omega \sigma q \} \) is finite. Let \(L_1 \) be the kernel of the action of \(K_1 \) on \(\Omega/q \), so \(L \leq L_1 \leq K_1 \). For any subset \(\Sigma \) of \(\Omega \), write \(V_\Sigma \) for \(\bigoplus_{\sigma \in \Sigma} V_\sigma \).
Let \(g \in K_2 \) with \(L^0_1 \neq L_1 \). Then \((K_1: L^0_1L_1) \leq 2 \), since \(\text{Alt}(\Omega/q) \) is simple of index 2 in \(\text{FSym}(\Omega/q) \). Also for any \(\omega \) in \(\Omega \) there is a finite subset \(\Sigma \) of \(\Omega \) with
\[
V_{\omega q}g(L^0_1)\mid L_1 = V_{\omega q}g \mid L_1 \leq V_{\Sigma q} = V_{\Sigma}.
\]
But \(V_{\omega}gK_1 = V \), so
\[
\dim_D V \leq 2 \cdot \dim_D(V_{\omega q}g(L^0_1)\mid L_1) \leq 2 \cdot |\Sigma| \cdot \dim_D V_{\omega} < \infty.
\]
This contradiction yields that \(L_1 \) is normal in \(K_2 \). Hence the \(D-L_1 \) homogeneous components of \(V \) form a system of imprimitivity for \(K_2 \) in \(V \). But the choice of \(L, U \) and \(W \) above ensures that these are just the \(V_{\omega} \). Therefore \(V = \bigoplus_{\omega} V_{\omega} \) is also a system of imprimitivity for \(K_2 \). We may repeat the above arguments with \(K_2 \) in place of \(K_1 \). A simple transfinite induction yields that \(V = \bigoplus_{\omega} V_{\omega} \) is a system of imprimitivity for \(G \). This contradiction of the primitivity of \(G \) completes the proof that \(H \) is irreducible. The primitivity of \(H \) follows at once from the following lemma.

Lemma. Let \(V \) be an infinite-dimensional left vector space over the division ring \(D \) and \(G \) a subgroup of \(\text{FGL}(V) \). The following are equivalent.

a) \(G \) is irreducible and primitive.

b) \(G \neq (1) \) and every non-trivial normal subgroup of \(G \) is irreducible.

Proof. As we have seen above a) implies b) by [4], 3.1, and [5], Prop. 8. Suppose b) holds. Clearly \(G \) is irreducible. Consider a non-trivial system \(V = \bigoplus_{\omega} V_{\omega} \) of imprimitivity for \(G \). Then \(G \) acts transitively and finitarily on \(\Omega \) and each \(\dim_D V_{\omega} \) is finite. Also \(N = \bigcap_{\omega} N_{G}(V_{\omega}) \) is a reducible normal subgroup of \(G \) and hence by b) is \((1)\). This holds for any such system of imprimitivity. If \(G|_{\Omega} \) is totally imprimitive, then every element of \(G \) lies in some such \(N \). Hence \(G|_{\Omega} \) is almost primitive and hence for some such system of imprimitivity \(G|_{\Omega} \) is \(\text{Alt}(\Omega) \) or \(\text{FSym}(\Omega) \).

Let \(\omega \in \Omega \) and \(g \in N_{G}(\omega) \). Then the support \(\text{supp}_{\Omega}(g) \) of \(g \) in \(\Omega \) is finite and \(C_{G}(g) \geq \text{Alt}(\Omega \setminus \text{supp}_{\Omega}(g)) \). The latter is simple and does not lie in \(N_{G}(\omega) \). Hence
\[
|\omega C_{G}(g)| = (C_{G}(g) : C_{G}(g) \cap N_{G}(\omega)),
\]
which is infinite. If \(|V_{\omega},g| \neq \{0\} \), then \(|V_{\omega}x,g| \neq \{0\} \) for all \(x \) in \(C_{G}(g) \) and \(\dim_D[V,g] \geq |\omega C_{G}(g)| \) is infinite. Consequently \(g \) and \(N_{G}(\omega) \) centralize \(V_{\omega} \). Let \(v_{\omega} \in V_{\omega} \{0\} \) and let \(X \) be a right transversal of \(N_{G}(\omega) \) to \(G \). Then \(U = \bigoplus_{x \in X} Dv_{\omega}x \leq V \) is a permutation module for \(G \) and \(\sum_{x,g \in X} D(v_{\omega}x - v_{\omega}y) \) is a proper \(D-G \) submodule of \(U \) and hence of \(V \). This contradicts the irreducibility of \(G \) and so \(G \) is primitive as claimed.

Now suppose \(\dim_D V \) is finite but otherwise assume the notation of the theorem. Clearly \(H \) now need not be irreducible; just let \(H \) be the center of \(G = \text{GL}(V) \). If \(H \) is normal, then \(H \) is homogeneous and hence has no non-zero fixed-points in \(V \). However if \(H \) is only subnormal, then \(H \) can have non-zero fixed-points. For example let \(G \) be the group \((E)\) of [2], p. 239. Then \(G \) is an irreducible primitive subgroup of \(\text{GL}(3,\mathbb{C}) \) of order 108 and is the split extension of a non-abelian normal subgroup \(N \) of order 27 and exponent 3 (it is a copy of \(\text{Tr}_{1}(3,3) \)) containing \(a = \text{diag}(1,\exp(2\pi/3),\exp(4\pi/3)) \) and a cyclic group of order 4. Also \(N \) is nilpotent of class 2, the subgroup \((a)\) is subnormal in \(G \) of subnormal depth 3 and \((1,0,0) \) is a non-zero fixed-point of \(a \).
REFERENCES

School of Mathematical Sciences, Queen Mary & Westfield College, Mile End Road, London E1 4NS, England

E-mail address: b.a.f.wehrfritz@qmw.ac.uk