Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Calibrated thin $\boldsymbol \Pi _{\mathbf {1}}^{\mathbf {1}}$ $\sigma $-ideals are $\boldsymbol G_{\delta }$


Author: Miroslav Zelený
Journal: Proc. Amer. Math. Soc. 125 (1997), 3027-3032
MSC (1991): Primary 03E15, 28A05; Secondary 42A63
DOI: https://doi.org/10.1090/S0002-9939-97-04041-0
MathSciNet review: 1415378
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $E$ be a compact metric space, and let $I \subset \mathcal {K} (E) $ be a calibrated thin $\boldsymbol \Pi _{\mathbf {1}}^{\mathbf {1}}$ $\sigma $-ideal. Then $I$ is $\boldsymbol G_{\delta }$. This solves an open problem, which was posed by Kechris, Louveau and Woodin. Using our result we obtain a new proof of Kaufman's theorem concerning $U$-sets and $U_{0}$-sets.


References [Enhancements On Off] (What's this?)

  • 1. G. Debs, J. Saint-Raymond, Ensembles boréliens d'unicité et d'unicité au sens large, Ann. Inst. Fourier (Grenoble) 37 (1987), 217-239. MR 89d:04007
  • 2. A. S. Kechris, A. Louveau, Descriptive Set Theory and the Structure of Sets of Uniqueness, London Math. Soc. Lecture Note Ser. 128, Cambridge Univ. Press, 1989. MR 90a:42008
  • 3. A. S. Kechris, A. Louveau, W. H. Woodin, The structure of $\sigma $-ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), 263-288. MR 88f:03042
  • 4. E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182. MR 13:54f
  • 5. C. E. Uzcátegui A., The covering property for $\sigma $-ideals of compact sets, Fund. Math. 141 (1992), 119-146. MR 94a:03077

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 03E15, 28A05, 42A63

Retrieve articles in all journals with MSC (1991): 03E15, 28A05, 42A63


Additional Information

Miroslav Zelený
Affiliation: Faculty of Mathematics and Physics, Charles University, Sokolovská 83, Prague 186 00, Czech Republic
Email: zeleny@karlin.mff.cuni.cz

DOI: https://doi.org/10.1090/S0002-9939-97-04041-0
Received by editor(s): May 5, 1996
Additional Notes: Research supported by Research Grants GAUK 362, GAUK 363 and GAČR 201/94/0474.
Communicated by: Franklin D. Tall
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society