Prescribing Gaussian curvature on

Author:
Sanxing Wu

Journal:
Proc. Amer. Math. Soc. **125** (1997), 3119-3123

MSC (1991):
Primary 58G30; Secondary 53C21

MathSciNet review:
1423342

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We derive a sufficient condition for a radially symmetric function which is positive somewhere to be a conformal curvature on . In particular, we show that every nonnegative radially symmetric continuous function on is a conformal curvature.

**1.**Jan Musiałek,*On a certain problem for some class of parabolic differential equations of the fourth order*, Funct. Approx. Comment. Math.**17**(1987), 73–82. MR**893743****2.**Kuo-Shung Cheng and Wei-Ming Ni,*On the structure of the conformal Gaussian curvature equation on 𝑅²*, Duke Math. J.**62**(1991), no. 3, 721–737. MR**1104815**, 10.1215/S0012-7094-91-06231-9**3.**Wei Yue Ding and Wei-Ming Ni,*On the elliptic equation Δ𝑢+𝐾𝑢^{(𝑛+2)/(𝑛-2)}=0 and related topics*, Duke Math. J.**52**(1985), no. 2, 485–506. MR**792184**, 10.1215/S0012-7094-85-05224-X**4.**R. E. Edwards,*Functional analysis*, Holt, Rinehart and Winston, New York, 1965.**5.**D. Hulin and M. Troyanov,*Prescribing curvature on open surfaces*, Math. Ann.**293**(1992), no. 2, 277–315. MR**1166122**, 10.1007/BF01444716**6.**Jerry L. Kazdan and F. W. Warner,*Curvature functions for compact 2-manifolds*, Ann. of Math. (2)**99**(1974), 14–47. MR**0343205****7.**Morris Kalka and DaGang Yang,*On conformal deformation of nonpositive curvature on noncompact surfaces*, Duke Math. J.**72**(1993), no. 2, 405–430. MR**1248678**, 10.1215/S0012-7094-93-07214-6**8.**Morris Kalka and DaGang Yang,*On nonpositive curvature functions on noncompact surfaces of finite topological type*, Indiana Univ. Math. J.**43**(1994), no. 3, 775–804. MR**1305947**, 10.1512/iumj.1994.43.43034**9.**R. C. McOwen,*On the equation and prescribing negative curvature on*, J. Math. Anal. Appl.**103**(1984), 365-370. MR**86c:58755****10.**Robert C. McOwen,*Conformal metrics in 𝑅² with prescribed Gaussian curvature and positive total curvature*, Indiana Univ. Math. J.**34**(1985), no. 1, 97–104. MR**773395**, 10.1512/iumj.1985.34.34005**11.**W. F. Mascarenhas and M. A. Teixeira,*A note on unimodal mappings with infinitely many attractors*, Portugal. Math.**43**(1985/86), no. 4, 455–461 (1987). MR**911451****12.**Wei Ming Ni,*On the elliptic equation Δ𝑢+𝐾(𝑥)𝑢^{(𝑛+2)/(𝑛-2)}=0, its generalizations, and applications in geometry*, Indiana Univ. Math. J.**31**(1982), no. 4, 493–529. MR**662915**, 10.1512/iumj.1982.31.31040**13.**D. H. Sattinger,*Conformal metrics in 𝑅² with prescribed curvature*, Indiana Univ. Math. J.**22**(1972/73), 1–4. MR**0305307**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
58G30,
53C21

Retrieve articles in all journals with MSC (1991): 58G30, 53C21

Additional Information

**Sanxing Wu**

Affiliation:
Department of Applied Mathematics, 100083, Beijing University of Aeronautics and Astronautics, Beijing, People’s Republic of China

DOI:
http://dx.doi.org/10.1090/S0002-9939-97-04150-6

Keywords:
Prescribing Gaussian curvature,
semilinear elliptic PDE,
integral equation

Received by editor(s):
May 10, 1996

Communicated by:
Peter Li

Article copyright:
© Copyright 1997
American Mathematical Society