A RENEWAL THEOREM IN THE FINITE-MEAN CASE

J. L. GELUK

(Communicated by Stanley Sawyer)

Abstract. Let $F(\cdot)$ be a c.d.f. on $(0, \infty)$ such that $F(\cdot) \equiv 1 - F(\cdot)$ is regularly varying with exponent $-\alpha$, $1 < \alpha < 2$. Then $U(t) - \frac{t}{\mu} - \frac{1}{\pi^2} \int_0^\infty F(v)dv = O(t^2F(t)^2F(t^2(t)))$ as $t \to \infty$, where $U(t) = EN(t)$ is the renewal function associated with $F(t)$. Moreover similar estimates are given for distributions in the domain of attraction of the normal distribution and for the variance of $N(t)$. The estimates improve earlier results of Teugels and Mohan.

1. Introduction and results

In this paper we assume that X_1, X_2, \ldots is a sequence of i.i.d. real-valued positive random variables with d.f. F. Define the associated random walk by $S_0 = 0, S_n = X_1 + \ldots + X_n$ for $n \geq 1$, $N(t) = \max \{n \geq 0; S_n \leq t\}$ and the renewal function U by

$$U(t) \equiv EN(t) = \sum_{n=0}^\infty P(S_n \leq t).$$

If F is not arithmetic, Blackwell’s theorem says that

$$U(t) - U(t - h) \to \frac{h}{\mu} \text{ as } t \to \infty$$

for every $h > 0$ where $\mu = EX_1$. See Feller [5] for a proof and an extension to the arithmetic case. Extensions such as

$$U(t) - \frac{t}{\mu} \to \frac{\sigma^2 + \mu^2}{2\mu^2} \text{ as } t \to \infty$$

in case σ^2 is finite are usually proved using so-called key renewal theorems which give the asymptotic behavior of the convolution

$$(U * Q)(t) = \int_{0-}^t Q(t-u)U(du)$$

as $t \to \infty$ under suitable hypothesis on $Q(\cdot)$ and $F(\cdot)$.
In this paper we consider the special case where F is not arithmetic and the distribution function tail $\bar{F} \equiv 1 - F$ is regularly varying, i.e.
 solves
\begin{equation}
\frac{\bar{F}(tx)}{\bar{F}(t)} \to x^{-\alpha} \text{ as } t \to \infty.
\end{equation}

In this case we use the notation $\bar{F}(\cdot) \in RV_{-\alpha}$. Following earlier work by Feller [4] and Smith [10, 11], Teugels [12] addressed the question of the asymptotic behavior of the convolution $U \ast Q(\cdot)$ under the assumption $\bar{F} \in RV_{-\alpha}$ where $0 < \alpha < 2$. In case $\frac{1}{2} < \alpha < 1$ (which implies $\mu = \infty$) an improvement of Teugels’ result is given by Anderson and Athreya [1] using a result of Erickson [3]. In the case of a regularly varying tail function with $1 < \alpha < 2$ (in which case $\mu < \infty$ and $\sigma^2 = \infty$) Teugels [12] proved that
\begin{equation}
\tau(t) \equiv U(t) - \frac{t}{\mu} \sim \frac{t^2 \bar{F}(t)}{\mu^2 (\alpha - 1)(2 - \alpha)} \text{ as } t \to \infty
\end{equation}

(whence $\tau(\cdot) \in RV_{2-\alpha}$) under a supplementary condition. This condition was shown to be unnecessary in a paper by Mohan [8]. Besides this, Mohan proved that for $F \in D(\alpha)$, the domain of attraction of a stable law with exponent α where $1 < \alpha \leq 2$ (in case $\alpha = 2$ F is assumed to have infinite variance), the above function $\tau(\cdot)$ satisfies the asymptotic relation
\begin{equation}
\tau(t) \sim \frac{1}{\mu^2} \int_0^t \int_x^{\infty} \bar{F}(v)dvdx \text{ as } t \to \infty.
\end{equation}

It should be observed that the above asymptotic relation holds for non-arithmetic F with finite mean μ even without the assumption (1.1). See Frenk [6], Lemma 4.1.2. Note that in case $1 < \alpha < 2$ relation (1.3) is equivalent to (1.2). In this paper we show that the assumption $F \in D(\alpha)$ with $1 < \alpha \leq 2$ permits a stronger conclusion than (1.3). In particular we have the following results.

Theorem 1.1. Suppose $F \in D(\alpha)$ with $1 < \alpha \leq 2$ (where in case $\alpha = 2$ we assume σ^2 infinite) is not arithmetic. Suppose $Q(t) = \int_t^{\infty} q(s)ds < \infty$, $t \geq 0$ where $q(\cdot)$ is nonnegative and nonincreasing. Suppose $\int_0^\infty Q(s)ds \in RV_{-\gamma+1}$ ($0 < \gamma \leq 1$, where in case $\gamma = 1$ we assume $tQ(t) \to \infty$ as $t \to \infty$. Then as $t \to \infty$

\begin{equation}
(U \ast Q)(t) = \begin{cases}
\frac{1}{\mu} \int_0^t Q(s)ds + O(\tau(t)Q(\tau(t))) & \text{if } 0 < \gamma < 1, \\
\frac{1}{\mu} \int_0^t Q(s)ds + o(\int_0^{\tau(t)} Q(s)ds) & \text{if } \gamma = 1.
\end{cases}
\end{equation}

Theorem 1.2. Suppose $F \in D(\alpha)$ with $1 < \alpha \leq 2$ (where in case $\alpha = 2$ we assume σ^2 infinite) is not arithmetic. Then as $t \to \infty$

\begin{equation}
U(t) - \frac{t}{\mu} - \frac{1}{\mu^2} \int_0^t \int_x^{\infty} \bar{F}(v)dvdx = \begin{cases}
O(\tau(\tau(t))) = O(t^3 \bar{F}(t)^2 \bar{F}(t^2)) & \text{if } 1 < \alpha < 2, \\
o(\tau(\tau(t))) & \text{if } \alpha = 2.
\end{cases}
\end{equation}

We may use the same technique as Smith [11] to find the variance of $N(t)$. Using (1.5) and the method used in Smith’s paper gives the following estimate which improves the estimates given in the papers of Teugels [12]) and Mohan [8]. We omit the details of the proof.
Theorem 1.3. Under the assumptions of Theorem 1.2 we have

\[
\var N(t) - \frac{4}{\mu^3} \int_0^t \int_0^u \int_v^\infty F(s)dsdvdu + \frac{2t}{\mu^3} \int_0^t \int_0^\infty F(s)dsdv = \\
\begin{cases}
O(t^\beta F(t)^2 F(t^2)) & \text{if } 1 < \alpha < 2, \\
o(t\tau(t)), \text{where } \tau(\cdot) \text{ satisfies (1.3)} & \text{if } \alpha = 2.
\end{cases}
\]

(1.6)

2. Proofs

In the proofs below we write \(\beta = 2 - \alpha \). Before giving the proofs of the results we list some well-known properties of RV functions which are used in the sequel. For a proof the reader is referred to Bingham et al. [2], Geluk and de Haan [7] or Resnick [9].

Lemma 1. Suppose \(\phi \in RV_\delta \). It follows that

(i) Uniform convergence theorem for regularly varying functions. Convergence in \(\phi(tx)/\phi(t) \to x^\delta(t \to \infty) \) is uniform on compact intervals of \((0, \infty)\).

(ii) Karamata’s theorem. There exists \(t_0 > 0 \) such that \(\phi(t) \) is positive and locally bounded for \(t > t_0 \). If \(\delta \geq -1 \), then

\[
\lim_{t \to \infty} \frac{t \phi(t)}{\int_{t_0}^t \phi(s)ds} = \delta + 1.
\]

A similar result holds for \(\delta < -1 \).

(iii) Potter’s inequality. If \(\varepsilon_1, \varepsilon_2 > 0 \) are arbitrary, there exists \(t_0 = t_0(\varepsilon_1, \varepsilon_2) \) such that for \(t \geq t_0, tx \geq t_0 \)

\[
(1 - \varepsilon_1)x^\delta - \varepsilon_2 < \frac{\phi(tx)}{\phi(t)} < (1 + \varepsilon_1)x^{\delta + \varepsilon_2}.
\]

(iv) Monotone density theorem. If \(\delta \geq 0 \) and \(\phi(t) = \int_0^t f(s)ds \) for \(t \geq 0 \) with \(f \) monotone, then \(\lim_{t \to \infty} tf(t)/\phi(t) = \delta \). Hence in case \(\delta > 0 \) we have \(f(\cdot) \in RV_{\delta-1} \).

Proof of Theorem 1.1. We write

\[
\int_{0-}^t Q(t - y)U(dy) = I_1 + I_2 + I_3,
\]

where \(I_1, I_2 \) and \(I_3 \) are the integrals over \((0, [L(t)])\), \([L(t)], [t]\) and \([t], t)\) respectively, where \([t]\) denotes the greatest integer not exceeding \(t \). Take \(L(t) \to \infty (t \to \infty) \) a slowly varying (i.e. in \(RV_\delta \)) function. In case \(\beta = 0 \) take in addition \(L(t) = o(\tau(t)) \) (\(t \to \infty \)), which is possible since \(\tau(t) \to \infty \) as \(t \to \infty \). (Note that \(F \) has infinite variance.)

First we estimate \(I_1 = \int_0^{[L(t)]} Q(t - y)U(dy) \). By monotonicity of \(Q \) we have as \(t \to \infty \)

\[
0 \leq I_1 \leq Q(t - [L(t)])U(L(t)).
\]

Since \(L(t) = o(t) \) and \(\tau(.) \in RV_\beta, 0 \leq \beta < 1 \), we have \(\tau(t) = o(t - L(t)) \) as \(t \to \infty \); hence \(Q(t - [L(t)]) \leq Q(\tau(t)) \) for \(t \) sufficiently large. It follows that \(I_1 = O(L(t)Q(\tau(t))) = o(\tau(t)Q(\tau(t))) \).
The second integral is estimated as follows.

\[I_2 = \sum_{j=[L(t)]+1}^{[t]} \int_{j-1}^{j} Q(t - y) U(dy) \]

\[\leq \sum_{j=[L(t)]+1}^{[t]} Q(t - j)(U(j) - U(j - 1)) \]

(2.1)

and similarly

\[I_2 \geq \sum_{j=[L(t)]+1}^{[t]} Q(t - j + 1)(U(j) - U(j - 1)) \]

(2.2)

Application of the Lemmas 2, 4 and 5 below shows that \(I_2 = \frac{1}{\mu} \int_{[t]}^{t} Q(s) ds + O(\tau(t)Q(\tau(t))) + o(\int_{0}^{\tau(t)} Q(s) ds) \) as \(t \to \infty \). From Lemma 1 (ii) and (iv) in case \(0 < \gamma < 1 \) it follows that \(\int_{0}^{t} Q(s) ds \sim (1 - \gamma)^{-1} t Q(t) \) and \(t Q(t) \to \infty (t \to \infty) \).

In case \(\gamma = 1 \) we have \(t Q(t) = o(\int_{0}^{t} Q(s) ds) \). The proof is complete since \(I_3 = \int_{[t]}^{t} Q(t - y) U(dy) = O(U(t) - U([t])) = O(1) \) by Blackwell’s theorem. \(\square \)

In the Lemmas 2 to 5 below the assumptions of Theorem 1.1 are supposed to be satisfied.

Lemma 2.

\[\sum_{j=[L(t)]+1}^{[t]} Q(t - j) = \int_{0}^{t} Q(s) ds + O(\tau(t)Q(\tau(t))) \quad (t \to \infty). \]

The same estimate holds for \(\sum_{j=[L(t)]}^{[t]-1} Q(t - j) \).

Proof of Lemma 2. Since the second statement is equivalent to the first (note that \(Q(0+) < \infty \)) we only prove the first statement. Note that by the monotonicity of \(Q \)

\[\sum_{j=[L(t)]+1}^{[t]} Q(t - j) \geq \int_{t-[L(t)]}^{t-[L(t)+1]} Q(s) ds = \int_{0}^{t} Q(s) ds - \int_{t-[L(t)+1]}^{t} Q(s) ds + O(1). \]

The last integral can be estimated by \(0 \leq \int_{t-[L(t)+1]}^{t} Q(s) ds \leq Q(t - [L(t)]L([t])); \) hence the integral is \(O(\tau(t)Q(\tau(t))) \), \(t \to \infty \) using the same argument as in the proof above.

Similarly we have

\[\sum_{j=[L(t)]+1}^{[t]} Q(t - j) \leq Q(0+) + \int_{0}^{t-[L(t)+1]} Q(s) ds = \int_{0}^{t} Q(s) ds + O(\tau(t)Q(\tau(t))). \]

\(\square \)
Lemma 3. As \(t \to \infty \)

\[
\phi(t) \equiv \int_{[L(t)]}^{[t]-[\tau(t)]} q(t-s)\tau(s)ds = O(\tau(t)Q(\tau(t)))
\]

Proof of Lemma 3. We estimate

\[
\phi(t) = t \int_{[L(t)]}^{[t]-[\tau(t)]} q(t(1-u))\tau(tu)du
\]
as follows. Note that \(L(t) \to \infty \) and \(\tau(t) \to \infty \) \((t \to \infty)\); hence \(\tau(.) \) is positive on the specified interval of integration for \(t \) sufficiently large. From (1.3) it follows that \(\tau(.) \) is asymptotic to a non-decreasing function. It follows that for \(\varepsilon > 0 \) arbitrary there exists \(t_0 = t_0(\varepsilon) \) such that \(\tau(tu) \leq (1+\varepsilon)\tau([t] - [\tau(t)]) \) uniformly for \(u \in \left[\frac{[L(t)]}{t}, \frac{[t]-[\tau(t)]}{t} \right] \) as \(t > t_0(\varepsilon) \). Hence we obtain

\[
\phi(t) \leq (1+\varepsilon)t\tau([t] - [\tau(t)]) \int_{[L(t)]}^{[t]-[\tau(t)]} q(t(1-u))du.
\]

Regular variation of the function \(\tau(.) \) with exponent \(\beta \in [0,1) \) implies

\[
\tau([t] - [\tau(t)]) \sim \tau(t) \quad \text{as} \quad t \to \infty;
\]
hence

\[
\phi(t) \leq (1+\varepsilon)^2\tau(t) \int_{t-[t]+[\tau(t)]}^{t-[L(t)]} q(s)ds \leq (1+\varepsilon)^2\tau(t)Q([\tau(t)])
\]
for \(t \) sufficiently large. \(\Box \)

Lemma 4.

\[
S_1(t) \equiv \sum_{j=[L(t)]+1}^{[t]-[\tau(t)]} Q(t-j)\tau(j) - \tau(j-1)) = O(\tau(t)Q(\tau(t)))
\]
as \(t \to \infty \). The same estimate holds if \(Q(t-j) \) is replaced with \(Q(t-j+1) \).

Proof of Lemma 4. We only prove the first estimate, the second can be proved similarly. Using partial summation we have

\[
\begin{align*}
|S_1(t)| & = | - \Sigma + Q(t-[t]+[\tau(t)])\tau([t] - [\tau(t)]) - Q(t-[L(t)])\tau([L(t)]) | \\
& \leq \Sigma + Q(t-[t]+[\tau(t)])\tau([t] - [\tau(t)]) + Q(t-[L(t)])\tau([L(t)])
\end{align*}
\]
(2.3)

where

\[
\Sigma = \sum_{j=[L(t)]+1}^{[t]-[\tau(t)]} (Q(t-j) - Q(t-j+1))\tau(j-1).
\]

The middle term on the right-hand side in equation (2.3) is dominated by \((1+\varepsilon)\tau(t)Q(\tau(t)-1)\) and the last term is asymptotic to

\[
\tau(L(t))Q(t-[L(t)]) = O(\tau(t)Q(\tau(t)))
\]
by the same argument as in the proof of Theorem 1.1. Note that since \(L(t) \to \infty \) and \(\tau(t) \to \infty \) \((t \to \infty)\), monotonicity of \(Q \) implies that \(\Sigma \geq 0 \) for \(t \) sufficiently
large. We proceed with the upper estimate. For $\varepsilon > 0$ arbitrary and t sufficiently large we have

\[
\Sigma = \sum_{j=[t]-[\tau(t)\varepsilon]}^{[t]-[\tau(t)]} \tau(j-1) \int_{t-j}^{t-j+1} q(s)ds \\
\leq (1 + \varepsilon) \sum_{j=[t]-[\tau(t)]}^{[t]-[\tau(t)\varepsilon]} \int_{t-j}^{t-j+1} \tau(t-s)q(s)ds \\
= (1 + \varepsilon) \int_{[t]-[\tau(t)]}^{[t]-[\tau(t)\varepsilon]} \tau(s)q(t-s)ds.
\]

Note that the above inequality follows from (1.3) as in the proof of Lemma 3 above. Application of Lemma 3 completes the proof.

Lemma 5.

\[
S_2(t) = \sum_{j=[t]-[\tau(t)]}^{[t]} Q(t-j+1)(\tau(j) - \tau(j-1)) = o\left(\int_0^{\tau(t)} Q(s)ds\right)
\]

as $t \to \infty$. The same estimate holds if $Q(t-j+1)$ is replaced with $Q(t-j)$.

Proof of Lemma 5. Since $\tau(t) - \tau(t-1) = U(t) - U(t-1) - \frac{1}{\mu} \to 0$ as $t \to \infty$ by Blackwell’s theorem, it follows that for $\varepsilon > 0$ and $t > t(\varepsilon)$

\[
|S_2(t)| \leq \varepsilon \sum_{j=[t]-[\tau(t)\varepsilon]}^{[t]} Q(t-j+1) \\
\leq \varepsilon \{Q(0+) + \int_{[t]-[\tau(t)\varepsilon]}^{[t]-[\tau(t)]} Q(s)ds\}.
\]

Since $\int_0^{t} Q(s)ds$ is regularly varying, the integral on the right-hand side is asymptotic to $\int_0^{\tau(t)} Q(s)ds$. The statement of the lemma is proved since $\varepsilon > 0$ is arbitrary and $\int_0^{\tau(t)} Q(s)ds \geq \tau(t)Q(\tau(t)) \to \infty$ as $t \to \infty$. The proof of the second statement is similar.

Proof of Theorem 1.2. Integrating the renewal equation $\int_{0^-}^{s} F(s-y)U(dy) = 1$ over the interval $[0,t]$ ($t > 0$) gives $\int_0^{t} \int_0^{t-y} F(u)duU(dy) = t$. It follows that

\[
U(t) - \frac{t}{\mu} = \int_{0^-}^{t} Q(t-y)U(dy)
\]

where $Q(t) = \frac{1}{\mu} \int_t^{\infty} F(s)ds$.

Since the asymptotic behavior of τ is given by (1.3), application of Theorem 1.1 completes the proof. (Note that $t^2 F(t) \geq \int_0^t x^2 F(dx) \to \infty$; hence $tQ(t) \to \infty$ as $t \to \infty$ in case $\alpha = 2$.)

\[
\square
\]
REFERENCES

ECONOMETRIC INSTITUTE, ERASMUS UNIVERSITY ROTTERDAM, P.O. BOX 1738, NL-3000 DR ROTTERDAM, THE NETHERLANDS

E-mail address: jgeluk@few.eur.nl