boundedness of determinants of vector fields

Author:
Loukas Grafakos

Journal:
Proc. Amer. Math. Soc. **125** (1997), 3279-3288

MSC (1991):
Primary 42B30

DOI:
https://doi.org/10.1090/S0002-9939-97-03958-0

MathSciNet review:
1403130

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider multilinear operators given by determinants of matrices of the form , where the 's are vector fields on . We give conditions on the 's so that the corresponding operator maps products of Lebesgue spaces into some anisotropic space , when .

**[CG]**R. Coifman and L. Grafakos,*Hardy space estimates for multilinear operators*I, Rev. Mat. Iber.**8**(1992), 45-67. MR**93j:42011****[CLMS]**R. R. Coifman, P. L. Lions, Y. Meyer and S. Semmes,*Compacité par compensation et espaces de Hardy*, C. R. Acad Sci Paris**309**(1991), 945-949. MR**91h:46058****[CLMS]**R. R. Coifman, P. L. Lions, Y. Meyer and S. Semmes,*Compensated compactness and Hardy spaces*, J. Math. Pures Appl.**72**(1993), 247-286. MR**95d:46033****[CRW]**R. R. Coifman, R. Rochberg and G. Weiss,*Factorization theorems for Hardy spaces in several variables*, Ann. of Math.**103**(1976), 611-635. MR**54:843****[CW]**R. R. Coifman and G. Weiss,*Extensions of Hardy spaces and their use in Analysis*, Bull. AMS**83**(1977), 569-645. MR**56:6264****[FOS]**G. Folland and E. M. Stein,*Harmonic Analysis on Homogeneous groups*, Mathematical Notes, Princeton Univ. Press, Princeton NJ (1982).**[G]**L. Grafakos,*Hardy space estimates for multilinear operators*II, Rev. Mat. Iber.**8**(1992), 69-92. MR**93j:42012****[GR]**L. Grafakos and R. Rochberg,*Compensated Compactness and the Heisenberg group*, Math. Ann.**301**(1995), 601-611. MR**96e:22014****[IL]**T. Iwaniec and A. Lutoborski,*Integral estimates for null Langrangians*, Archive for Rat. Mech. and Anal.**125**(1993), 25-79. MR**95c:58054****[IS]**T. Iwaniec and C. Sbordone,*On the integrability of the Jacobian under minimal hypotheses*, Archive for Rat. Mech. and Anal.**119**(1992), 129-143. MR**93i:49057****[J]**D. Jerison,*The Poincaré Inequality for Vector Fields satisfying Hörmander's Condition*, Duke Math J.**53**(1986), 503-523. MR**87i:35027****[L1]**G. Lu,*Weighted Poincaré and Sobolev Inequalities for Vector Fields satisfying Hörmander's condition and applications*, Rev. Mat. Iber.**8**(1992), 367-439. MR**94c:35061****[L2]**G. Lu,*The sharp Poincaré inequality for free vector fields: An endpoint result*, Rev. Mat. Iber.**10**(1994). MR**96g:26023****[M]**S. Müller,*Higher integrability of Determinants and weak convergence in*, J. Reine Angew. Math**412**(1990), 20-34. MR**92b:49026****[NSW]**A. Nagel, E. M. Stein and S. Wainger,*Balls and metrics defined by vector fields I, Basic Properties*, Acta Math.**155**(1985), 103-147. MR**86k:46049****[RS]**L. P. Rothschild and E. M. Stein,*Hypoelliptic differential operators and nilpotent groups*, Acta Math.**137**(1976), 247-320. MR**55:9171****[S]**S. Semmes,*A primer on Hardy spaces, and some remarks on a Theorem of Evans and Müller*, Comm. PDE**19**(1994), 277-319. MR**94j:46038****[S1]**E. M. Stein,*A note on the class*, Studia Math**32**(1968), 305-310.**[S2]**E. M. Stein,*Singular integrals and differentiability properties of functions*, Princeton Univ. Press, Princeton NJ (1970). MR**44:7280****[S3]**E. M. Stein,*Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals*, Princeton Univ. Press, Princeton NJ (1993). MR**95c:42002****[SW]**E. M. Stein and G. Weiss,*Introduction to Fourier Analysis on Euclidean spaces*, Princeton Univ. Press, Princeton NJ (1971). MR**46:4102**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
42B30

Retrieve articles in all journals with MSC (1991): 42B30

Additional Information

**Loukas Grafakos**

Affiliation:
Department of Mathematics, University of Missouri, Columbia, Missouri 65211-0001

Email:
loukas@math.missouri.edu

DOI:
https://doi.org/10.1090/S0002-9939-97-03958-0

Received by editor(s):
December 11, 1995

Received by editor(s) in revised form:
May 20, 1996

Additional Notes:
Research partially supported by the NSF and the University of Missouri Research Board

Communicated by:
J. Marshall Ash

Article copyright:
© Copyright 1997
American Mathematical Society