Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On Convex Class of Pairs of Convex Bodies


Authors: Jerzy Grzybowski and Ryszard Urbanski
Journal: Proc. Amer. Math. Soc. 125 (1997), 3397-3401
MSC (1991): Primary 52A07, 90C30, 26A27
DOI: https://doi.org/10.1090/S0002-9939-97-03959-2
MathSciNet review: 1403131
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we introduce a quotient class of pairs of convex bodies in which every member have convex union.


References [Enhancements On Off] (What's this?)

  • 1. V. F. Demyanov, A. M. Rubinov, Quasidifferential Calculus, Optimization Software Inc., Publication Division, New York 1986.
  • 2. J. Grzybowski, Minimal pairs of convex compact sets, Arch. Math. Vol. 63 (1994), 173-181. MR 95h:52001
  • 3. L. Hörmander, Sur la fonction d'appui des ensembles convex dans une espace localement convexe, Arkiv for Math. 3 (1954), 181-186. MR 16:831e
  • 4. von K. Leichtweiß, Konvexe Mengen, VEB Deutscher Verlag der Wissenschaften, Berlin 1980. MR 81b:52001
  • 5. D. Pallaschke, S. Scholtes and R. Urba\'{n}ski, On minimal pairs of compact convex sets, Bull. Polish Acad. Sci. Math. 39 (1991), 1-5. MR 93j:52002
  • 6. D. Pallaschke and R. Urba\'{n}ski, Some criteria for the minimality of pairs of compact convex sets, Zeitschrift für Opertations Research 37 (1993), 129-150. MR 94e:49004
  • 7. D. Pallaschke, R. Urba\'{n}ski, Reduction of quasidifferentials and minimal representations, Math. Programming 66 (1994), 161-180. MR 95i:49030
  • 8. A. G. Pinsker, The space of convex sets of a locally convex space, Trudy Leningrad Engineering-Economics Institute, 63 (1966), 13-17. MR 36:5653
  • 9. H. Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169. MR 13:659c
  • 10. A. M. Rubinov, I. S. Akhundov, Differences of compact sets in the sense of Demyanov and its application to non-smooth-analysis, Optimization 23 (1992), 179-189. MR 94j:49023
  • 11. S. Scholtes, Minimal pairs of convex bodies in two dimensions, Mathematika 39 (1992), 267-273. MR 93m:52012
  • 12. R. Urba\'{n}ski, A generalization of the Minkowski-Rådström-Hörmander Theorem, Bull. Polish Acad. Sci. Math. 24 (1976), 709-715. MR 56:1027

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 52A07, 90C30, 26A27

Retrieve articles in all journals with MSC (1991): 52A07, 90C30, 26A27


Additional Information

Jerzy Grzybowski
Affiliation: Faculty of Mathematics, and Computer Science, Adam Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland
Email: jgrz@math.amu.edu.pl

Ryszard Urbanski
Affiliation: Faculty of Mathematics, and Computer Science, Adam Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland
Email: rich@math.amu.edu.pl

DOI: https://doi.org/10.1090/S0002-9939-97-03959-2
Keywords: Convex Analysis, pairs of convex sets, quasidifferential
Received by editor(s): June 12, 1996
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society