ON THE DIOPHANTINE EQUATION $x^2 - 2^m = \pm y^n$

YANN BUGEAUD

(Communicated by William W. Adams)

Abstract. One of the purposes of this note is to correct the proof of a recent result of Y. Guo & M. Le on the equation $x^2 - 2^m = y^n$. Moreover, we prove that the diophantine equation $x^2 - 2^m = \pm y^n$, $x, y, m, n \in \mathbb{N}$, $\gcd(x, y) = 1$, $y > 1$, $n > 2$ has only finitely many solutions, all of which satisfying $n \leq 7.310^9$.

1. Introduction

Very recently, Yongdong Guo & Maohua Le [2] considered the diophantine equation

(1) \[x^2 - 2^m = y^n, \quad x, y, m, n \in \mathbb{N}, \quad \gcd(x, y) = 1, \quad y > 1, \quad n > 2, \]

where \mathbb{N} denotes the set of strictly positive integers. They claimed that (1) has only finitely many solutions, all of which satisfying $n < 2.10^9$. Unfortunately, their proof is incorrect, since they misuse a result of Ping-Ping Dong. Indeed, the $|\Lambda|$ occurring in the statement of Lemma 1 in [2] denotes the p-adic absolute value of Λ and not its archimedean absolute value. Consequently, their inequality (14) is not proved. Fortunately, it happens that the idea of using both archimedean and non-archimedean linear forms in logarithms can be applied and leads to the proof of a slight sharpening of the theorem in [2]; however some extra work is needed.

In parallel with equation (1), we also treat the diophantine equation

(2) \[x^2 + y^n = 2^m, \quad x, y, m, n \in \mathbb{N}, \quad \gcd(x, y) = 1, \quad y > 1, \quad n \geq 2. \]

Maohua Le [6, inequality (22)] applies a theorem of Shorey, Van der Poorten, Tijdeman & Schinzel [7, Theorem 2] to show that there exists some effective constant c_0 such that $n < c_0$ for any solution (x, y, m, n) of (2). However, he does not give an explicit value for c_0, which has to be very large, in view of the method of proof. Here, we use a totally different argument in order to compute a rather small bound for n.

The main tools of our proofs are the sharp estimates for linear forms in two logarithms in archimedean and non-archimedean metrics, due to Laurent, Mignotte & Nesterenko [5] and Bugeaud & Laurent [1], respectively.
2. Statement of the results

Theorem. If \((x, y, m, n)\) is a solution of equation (1) or equation (2), then \(m\) and \(n\) are odd and we have

\[n \leq 5.5 \times 10^5 \text{ and } n \leq 7.3 \times 10^5,\]

respectively. Moreover, equations (1) and (2) have only finitely many solutions.

Remark. The hypothesis \(n > 2\) in equation (1) is necessary. Indeed, for \(m \geq 3\), a solution of \(x^2 - 2^m = y^2\) is given by \((x, y) = (2^m - 2 + 1, 2^m - 2 - 1)\).

3. Auxiliary results

Lemma 1. The equation \(2^m - y^n = 1\) has no solution with \(y > 1\) and \(n \geq 2\).

Proof. The lemma immediately follows from Satz 3 of Hyyrö [3]. \(\square\)

For an integer \(x\), we denote by \(P[x]\) its greatest prime factor.

Lemma 2. Let \(a, b, x\) and \(y\) be non-zero integers with \(\gcd(x, y) = 1\). Put \(X = \max\{|x|, |y|\}\). For any integer \(n \geq 3\), there exist effectively computable constants \(c_1\) and \(X_1\), depending only on \(a, b\) and \(n\), such that

\[P[ax^2 + by^n] \geq c_1 (\log \log X \log \log \log X)^{1/2}, \text{ whenever } X \geq X_1.\]

Proof. This is a particular case of a theorem due to Kotov [4]. \(\square\)

The next two propositions deal with lower bounds for linear forms in two logarithms. Let \(\alpha = \alpha_1\) be a non-zero algebraic number with minimal defining polynomial \(a_0(X - \alpha_1) \ldots (X - \alpha_n)\) over \(\mathbb{Z}\). The logarithmic height of \(\alpha\), denoted by \(h(\alpha)\), is defined by

\[h(\alpha) = \frac{1}{n} \log \left(a_0 \prod_{i=1}^{n} \max\{1, |\alpha_i|\} \right).\]

For any prime number \(p\), let \(\overline{\mathbb{Q}}_p\) be an algebraic closure of the field \(\mathbb{Q}_p\) of \(p\)-adic numbers. We denote by \(v_p\) the unique extension to \(\overline{\mathbb{Q}}_p\) of the standard \(p\)-adic valuation over \(\mathbb{Q}_p\), normalized by \(v_p(p) = 1\).

Proposition 1. Let \(p\) be a prime number. Let \(\alpha_1\) and \(\alpha_2\) be two algebraic numbers which are \(p\)-adic units. Denote by \(f\) the residual degree of the extension \(\mathbb{Q}_p(\alpha_1, \alpha_2) \hookrightarrow \mathbb{Q}_p(\alpha_1, \alpha_2)\) and put \(D = [\mathbb{Q}(\alpha_1, \alpha_2) : \mathbb{Q}] / f\). Let \(b_1\) and \(b_2\) be two positive integers and put

\[\Lambda = \alpha_1^{b_1} - \alpha_2^{b_2}.\]

Denote by \(A_1 > 1\) and \(A_2 > 1\) two real numbers such that

\[\log A_i \geq \max\{h(\alpha_i), (\log p)/D\}, \quad i = 1, 2,\]

and put

\[b' = \frac{b_1}{D \log A_2} + \frac{b_2}{D \log A_1}.\]
If α_1 and α_2 are multiplicatively independent, then we have the lower bound

$$v_p(A) \leq \frac{18p(p^2 - 1)}{(p-1)(\log p)^4} \cdot D^4 \left(\max \left(\log b' + \log \log p + 0.4, \frac{15 \log p}{D}, 10 \right) \right)^2 \log A_1 \log A_2.$$

\textbf{Proof.} This is Théorème 4 of [1] with the choice $(\mu, \nu) = (15, 10)$.

\textbf{Proposition 2.} Let $\alpha_1 \geq 1$ and $\alpha_2 \geq 1$ be two real algebraic numbers. Let b_1 and b_2 be two positive integers and put

$$\Lambda = b_1 \log \alpha_1 - b_2 \log \alpha_2.$$

Set $D = [\mathbb{Q}(\alpha_1, \alpha_2) : \mathbb{Q}]$ and denote by $A_1 > 1$ and $A_2 > 1$ two real numbers satisfying

$$\log A_i \geq \max\{h(\alpha_i)1/D\}, \ i = 1, 2.$$

Finally, put

$$b' = \frac{b_1}{D \log A_2} + \frac{b_2}{D \log A_1}.$$

If α_1 and α_2 are multiplicatively independent, then we have the lower bound

$$\log |\Lambda| \geq -24.7 D^4 \left(\max\{\log b' + 0.18, 0.5, 20/D\} \right)^2 \log A_1 \log A_2.$$

\textbf{Proof.} This is Corollaire 2 of [5], where the numerical constants are given in Tableau 2 and correspond to the choice $h_2 = 20$. Notice that the hypotheses of the proposition imply that $h(\alpha_i) \leq |\log \alpha_i|/D$.

4. PROOF OF THE THEOREM

\textbullet \ \textbf{Elementary analysis of equations (1) and (2).} Let (x, y, m, n) be a solution of (1) with $n \geq 4$ and $2 | n$. Then we have

$$(x + y^{n/2})(x - y^{n/2}) = 2^m$$

and, since x and y are odd, it follows that $x + y^{n/2} = 2^{m-1}$ and $x - y^{n/2} = 2$. Hence, we get $y^{n/2} = 2^{m-2} - 1$, which is impossible by Lemma 1. Consequently, n must be odd. Moreover, reasoning modulo 4, we easily see that (2) has no solution with even n.

Now let (x, y, m, n) be a solution of (1) or (2) and assume that m is even. There exists $\delta \in \{1, -1\}$ such that $(x - 2^{m/2})(x + 2^{m/2}) = \delta y^n$ and, since x is odd, we get

$$x + 2^{m/2} = y_1^n, \ x - 2^{m/2} = \delta y_2^n,$$

with y_1 and y_2 positive integers, and we deduce that $2^{(m+2)/2} = y_1^n - \delta y_2^n$. Since x, y_1, y_2 and n (see above) are odd, the quotient $(y_1^n - \delta y_2^n)/(y_1 - \delta y_2)$ is an odd integer and it follows that $y_1^n - \delta y_2^n = y_1 - \delta y_2$, a contradiction. Hence n and m are both odd integers.

For any α in $\mathbb{Q}(\sqrt{2}) =: K$, denote by $[\alpha]$ the principal ideal of K generated by α. From the equation $x^2 - 2^m = \delta y^n$, we get

$$[x + 2^{(m-1)/2} \sqrt{2}] [x - 2^{(m-1)/2} \sqrt{2}] = [y]^n.$$
and there exists β in $\mathbb{Z}[\sqrt{2}]$, the ring of algebraic integers in \mathbb{K}, such that
\[(3) \quad [x + 2^{(m-1)/2}\sqrt{2}] = [\beta]^n,
\]
for $\gcd([x + 2^{(m-1)/2}\sqrt{2}], [x - 2^{(m-1)/2}\sqrt{2}]) = [1]$ and \mathbb{K} has unique factorisation.

Put $\rho = 1 + \sqrt{2}$; then $\rho^{-1} = \sqrt{2} - 1$ and ρ is the fundamental unit of \mathbb{K}. We infer from (3) that
\[x + 2^{(m-1)/2}\sqrt{2} = \delta^n \rho^u,
\]
where u is an integer and $\delta' = \pm 1$. As n is odd, using Euclidean division, we can write $\delta'/\delta \rho^u = (a + b\sqrt{2})/\rho^{-t}$, with $0 < t \leq n$. Set $\tau := 1$ or $\tau := -1$ according as t is even or odd. Then $a^2 - 2b^2 = \tau by$ and we infer from $x + 2^{(m-1)/2}\sqrt{2} > |x - 2^{(m-1)/2}\sqrt{2}|$ and $\rho^{-1} < \rho$ that $a + b\sqrt{2} > |a - b\sqrt{2}|$. Thus we have $\rho > 0$ and $b > 0$. Finally, setting $\varepsilon := a + b\sqrt{2}$, we get in both cases of equations (1) and (2)
\[(4) \quad \begin{cases} x + 2^{(m-1)/2}\sqrt{2} &= \varepsilon^n \rho^{-t}, \\ x - 2^{(m-1)/2}\sqrt{2} &= (\tau \varepsilon)^n \rho^t. \end{cases}
\]

An upper bound for m valid for the solutions of both equations (1) and (2). From the system (4) we deduce the equation
\[(5) \quad 2^{(m+1)/2}\sqrt{2} = \varepsilon^n \rho^{-t} - (\tau \varepsilon)^n \rho^t,
\]
and we put
\[(6) \quad \Lambda_u := \left(\frac{\varepsilon}{\tau \varepsilon}\right)^n - \rho^{2t}.
\]
Since $\tau \varepsilon/\tau$ is a root of the irreducible polynomial $\varepsilon \tau X^2 - (\varepsilon^2 + \tau^2)X + \varepsilon \tau$, we have $h(\tau \varepsilon/\tau) = \log \varepsilon$ and $\tau \varepsilon/\tau$ is not a unit. Thus $\tau \varepsilon/\tau$ and ρ^2 are multiplicatively independent algebraic numbers, which, moreover, are 2-adic units, since α is odd. Clearly, $v_2(\Lambda_u) = (m + 2)/2$. In order to bound m, we apply Proposition 1 to (6) with the following parameters:
\[\alpha_1 = \tau \varepsilon/\tau, \quad \alpha_2 = \rho^2 = 3 + 2\sqrt{2}, \quad b_1 = n, \quad b_2 = t, \quad p = 2, \quad D = 2, \quad f = 1,
\]
\[\log A_1 = \log \varepsilon, \quad \log A_2 = \log(1 + \sqrt{2}), \quad b' = \frac{n}{2\log(1 + \sqrt{2})} + \frac{t}{2\log \varepsilon},
\]
and we get, in both cases of equations (1) and (2),
\[(7) \quad m + 2 \leq 4400 \max\{\log b' + 0.034, 10\}^2 \log \varepsilon.
\]

The case of equation (2). Here, we have $\delta = -1, \tau \varepsilon < 0$ and $x < 2^{(m-1)/2}\sqrt{2}$. From (5), we deduce that $\varepsilon^n \rho^{-t} < 2^{(m+1)/2}\sqrt{2}$, whence
\[2n \log \varepsilon \leq 2t \log \rho + (m + 2) \log 2.
\]
Together with (7), we obtain
\[(8) \quad 2n(m + 2) \leq 4400 \left((m + 2) \log 2 + 2t \log \rho\right) \max\{\log b' + 0.034, 10\}^2.
\]

Since $2^m > y^n$, we have $m \log 2 > n \log y$ and
\[
\frac{t}{m + 2} \leq \frac{n}{m} \leq \frac{\log 2}{\log y} \leq \frac{\log 2}{\log 3}.
\]
Moreover, \(b' \leq n \left(\frac{1}{2 \log \rho} + \frac{1}{2 \log \varepsilon} \right) \leq 0.94 n \), since \(\varepsilon \geq 1 + 2\sqrt{2} \). Hence, together with (8), we get
\[
n \leq 3972 \max\{\log n - 0.02, 10\}^2
\]
and
\[
n \leq 7.3 \times 10^5,
\]
as claimed.

- **The case of equation (1).** Here, we have \(\delta = 1 \), \(\tau \varepsilon > 0 \) and \(x > 2^{(m-1)/2}\sqrt{2} \).

 Dividing (5) by \(\varepsilon^n \rho^{-t} \), we obtain
\[
\frac{2^{(m+1)/2}\sqrt{2}}{\varepsilon^n \rho^{-t}} = \frac{2^{(m+1)/2}\sqrt{2}}{x + 2^{(m-1)/2}\sqrt{2}} = 1 - \left(\frac{\tau \varepsilon}{\varepsilon} \right)^n \rho^{2t} =: A_a.
\]

 If \(A_a \geq 1/2 \), then we have \(2^{(m+3)/2}\sqrt{2} \geq \varepsilon^n \rho^{-t} \) and
\[
n \log \varepsilon - 2t \log \rho \leq (m + 4) \log 2.
\]

 Otherwise \(A_a < 1/2 \) and we get
\[
|\log(1 - A_a)| \leq 2A_a.
\]

 We apply Proposition 2 to the linear form
\[
|\log(1 - A_a)| = \left| n \log \left(\frac{\varepsilon}{\tau \varepsilon} \right) - t \log(3 + 2\sqrt{2}) \right|
\]
with the following parameters:
\[
\alpha_1 = \tau \varepsilon / \varepsilon, \quad \alpha_2 = \rho^2 = 3 + 2\sqrt{2}, \quad b_1 = n, \quad b_2 = t, \quad D = 2,
\]
\[
\log A_1 = \log \varepsilon, \quad \log A_2 = \log(1 + \sqrt{2}), \quad b' = \frac{n}{2 \log(1 + \sqrt{2})} + \frac{t}{2 \log \varepsilon}
\]
and, by (11), we obtain
\[
\log 2 + \log A_a \geq -349 \max\{\log b' + 0.18, 10\}^2 \log \varepsilon,
\]
hence, by (9),
\[
n \log \varepsilon - t \log \rho \leq \left((m + 4) \log 2 \right) / 2 + 349 \max\{\log b' + 0.18, 10\}^2 \log \varepsilon.
\]

From (7), (10) and (12) we infer that
\[
n \log \varepsilon - t \log \rho \leq \log 2 + 1525 \max\{\log b' + 0.034, 10\}^2 \log \varepsilon + 349 \max\{\log b' + 0.18, 10\}^2 \log \varepsilon.
\]

In the other hand, we have
\[
n \log \varepsilon - t \log \rho \geq n \left(1 - \frac{\log \rho}{\log \varepsilon} \right) \log \varepsilon.
\]

In order to get a better bound for \(n \), we pay particular attention to the smallest values of \(\varepsilon \). To this end, we put \(\mathcal{E} = \{1 + 2\sqrt{2}, 1 + 3\sqrt{2}, 1 + 4\sqrt{2}, 1 + 5\sqrt{2}, 3 + \sqrt{2}, 5 + \sqrt{2}, 5 + 2\sqrt{2}\} \) and we assume that \(\varepsilon \notin \mathcal{E} \). Since \(\varepsilon := a + b\sqrt{2} \) with coprime positive integers \(a \) and \(b \) and with odd \(a \), we then have \(\varepsilon \geq 7 + \sqrt{2} \) and \(\left(1 - \frac{\log \rho}{\log \varepsilon} \right)^{-1} \leq 1.71 \).

Moreover, \(b' \leq 0.81 n \) and, using (13), we get the upper bound
\[
n \leq 0.56 + 2608 \max\{\log b' - 0.17, 10\}^2 + 597 \max\{\log b' - 0.03, 10\}^2.
\]
We have to treat separately the cases when ε belongs to \mathcal{E}. Then we have $y = \tau \varepsilon z$ and, using the lower bound $\varepsilon^m \rho^{-t} \geq y^{n/2}$ together with $\log \varepsilon / \log y \leq 0.77$, we infer from (13) that (14) holds too. Thus, we obtain the upper bound

$$n \leq 5.5 \times 10^5,$$

which completes the proof of the first part of the theorem.

It only remains to show that the solutions of equations (1) and (2) are in finite number and are effectively computable. To this end, it suffices to apply Lemma 2 to the polynomials $x^2 \pm y^n$, where $3 \leq n \leq 7.3 \times 10^5$.

References

Université Louis Pasteur, U. F. R. de Mathématiques, 7, rue René Descartes, 67084 Strasbourg, France

E-mail address: bugeaud@pari.u-strasbg.fr
Current address: 31 rue de l’Etang, 56600 Lanester, France

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use