HOPF SUBALGEBRAS OF POINTED HOPF ALGEBRAS
AND APPLICATIONS

D. ŞTEFAN

(Communicated by Ken Goodearl)

Abstract. In this paper we construct certain Hopf subalgebras of a pointed Hopf algebra over a field of characteristic 0. Some applications are given in the case of Hopf algebras of dimension 6, p^2 and pq, where p and q are different prime numbers.

1. Preliminaries

Throughout this paper k will be an algebraically closed field of characteristic 0. In the first part of this note we shall prove that for any finite dimensional pointed Hopf algebra over k there is a Hopf subalgebra generated as an algebra by two elements g and x, where g is a group-like element and x is a g, 1-primitive element (Theorem 2). This result is then used for describing the isomorphism classes of pointed Hopf algebras of dimension p^2 and for proving that a pointed Hopf algebra of dimension pq is semisimple (p and q are different prime numbers). In the second part of the paper we shall prove that any Hopf algebra of dimension 6 is semisimple, so by [1], it is a group algebra or the dual of the group algebra of the symmetric group S_3.

Let H be a finite dimensional Hopf algebra over an algebraically closed field k, with char(k) = 0. We recall that an element $g \neq 0$ is called a group-like element if $\Delta(g) = g \otimes g$. By definition, $x \in H$ is a g, h-primitive element if $\Delta(x) = x \otimes g + h \otimes x$, where g, h are two group-like elements. In the particular case when $g = h = 1$ we say that x is a primitive element. We denote by $G(H)$, $P(H)$ and $P_{g,h}(H)$, respectively, the sets of group-like elements, of primitive elements and of g, h-primitive elements of H. A Hopf algebra H is called pointed if all its simple subcoalgebras are of dimension one. The results of the following proposition are “folklore”, so their proofs will be omitted.

Proposition 1. Let H be a finite dimensional Hopf algebra over k.

(a) If H' is a pointed commutative Hopf subalgebra of H, then $H' = k[G']$, where G' is a certain subgroup of $G(H)$.

(b) $P(H) = 0$.

(c) Let H be a pointed Hopf algebra. Then $G(H) = \{1\}$ if and only if dim(H) = 1. Moreover, if H is not cosemisimple, then there is a $g \in G(H)$ such that $P_{g,1}(H)$ is not contained in the coradical of H.

Received by the editors December 4, 1995 and, in revised form, June 10, 1996.

1991 Mathematics Subject Classification. Primary 16W30.

Key words and phrases. Hopf algebras.
Theorem 2. Let H be a pointed Hopf algebra. If H is not semisimple, then there exist two natural numbers m, n, with $m \neq 1$ and m divides n, an mth primitive root of 1 (denoted by ω) and two elements $g, x \in H$ such that
\begin{enumerate}[(a)]
\item $gx = \omega x g$;
\item g is a group-like element of order n;
\item $x \in P_{g,1}(H)$ and x^m is either 0 or $g^m - 1$.
\end{enumerate}

Proof. Let $g \neq 1$ be a group-like element as in the third part of Proposition 1. Let ϕ_g be the inner automorphism of H afforded by g. Let n be the order of g. Obviously ϕ_g is semisimple, so its restriction to $P_{g,1}(H)$ has an eigenvalue $\omega \neq 1$; otherwise there is $x \in P_{g,1}(H)$ which is not in $k[G(H)]$, such that $gx = x g$. The subalgebra generated by x and g is a group algebra (it is pointed and commutative), thus $x \in k[G(H)]$, a contradiction. We choose an eigenvalue $\omega \neq 1$ and a corresponding eigenvector x of ϕ_g. Hence $gx = \omega x g$ and x is in $P_{g,1}(H)$ by construction. Let m be the order of ω. Of course, m divides n, so we have only to prove that x^m equals either 0 or $g^m - 1$. Indeed, by [3, Proposition 1] we obtain $\Delta(x^m) = x^m \otimes g^m + 1 \otimes x^m$; therefore the subalgebra H' generated by g and x^m is a group algebra (being a commutative Hopf subalgebra of H). We end the proof by remarking that x^m is a g^m, 1-primitive element in H'.

Let n be a natural number and let ω be a primitive nth-root of 1. We recall that, by definition, $H_{n^2 \omega}$ is the Hopf algebra generated as an algebra by two elements g and x satisfying the relations $g^n = 1$, $x^n = 0$, $gx = \omega x g$. The coalgebra structure is defined such that g is a group-like element and x is g, 1-primitive.

Corollary 3 (Andruskiewitsch, Chin). If p is a prime natural number and H is a pointed Hopf algebra of dimension p^2, then $H \simeq k[G]$ or $H \simeq H_{p^2 \omega}$, where G is a group with p^2 elements and ω is a certain primitive nth-root of 1.

Corollary 4. Let p and q be two different prime numbers. If H is a pointed Hopf algebra of dimension pq, then H is semisimple.

2. HOPF ALGEBRAS OF DIMENSION 6

In this section we shall obtain the complete classification of Hopf algebras of dimension 6, as an application of Corollary 4. Namely, we shall prove the following

Theorem 5. Let H be a Hopf algebra of dimension 6. Then H is isomorphic to $k[C_6]$, $k[S_3]$ or $k[S_3]^*$, where C_6 and S_3 are respectively the cyclic group with 6 elements and the symmetric group with 6 elements.

Proof. We have to show that any Hopf algebra of dimension 6 is semisimple, as such a Hopf algebra is isomorphic to $k[C_6]$, $k[S_3]$ or $k[S_3]^*$ (see [1]). Let us suppose that H is a 6-dimensional Hopf algebra which is not semisimple. By the preceding corollary, H is neither pointed nor cosemisimple (any finite dimensional cosemisimple Hopf algebra over a field of characteristic 0 is semisimple). Then the coradical of H is isomorphic to $M_2(k)^*$ or $M_2(k)^* \oplus k$. The first case is not possible, as ε_H would induce an algebra map from $M_2(k) \simeq H^*/J(H^*)$ to k. Thus the coradical of H must be $M_2(k)^* \oplus k$ and, by [2, Thm. 5.4.2], there exists a coideal I of dimension 1 such that $H = \text{corad}(H) \oplus I$. Let x be an element of I which is not 0. Then $\Delta(x) = x \otimes a + b \otimes x$, where a and b are in H. Writing explicitly the equality $(\Delta \otimes I_H)(\Delta(x)) = (I_H \otimes \Delta)(\Delta(x))$ we can see easily that
\begin{align*}
\Delta(a) &= a \otimes a + c \otimes x, \\
\Delta(b) &= b \otimes b + x \otimes c, \\
\Delta(c) &= a \otimes c + c \otimes b,
\end{align*}
where \(c \in H \). Therefore the vector space generated by \(a, b, c \) and \(x \) is a subcoalgebra \(C \) of \(H \). The coalgebra \(M_2(k)^* \) is simple, hence \(M_2(k)^* \cap C = M_2(k)^* \) or \(M_2(k)^* \cap C = 0 \). In the first case it follows that \(M_2(k)^* = C \) and then \(x \in M_2(k)^* \), which contradicts the choice of \(x \). In conclusion \(M_2(k)^* \cap C = 0 \), which implies \(\dim(C) \leq 2 \). Actually, one gets \(\dim(C) = 2 \) and \(M_2(k)^* \oplus C = H \). \(C \) cannot be cosemisimple, otherwise \(H \) is semisimple, so \(\corad(C) = k1 \) and \(H_1 = C \). But \(C_1 = \corad(C) \oplus P(C) \), by [2, Lemma 5.3.2], thus \(0 \neq P(C) \subseteq P(H) \), a contradiction with the second part of Proposition 1.

Remark 6. The referee informed us that the results of the preceding theorem were already obtained by R. Williams [4].

References

Facultatea de Matematică, Universitatea București, Str. Academiei 14, RO-70109 Bucharest 1, Romania

E-mail address: dstefan@al.math.unibuc.ro