Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Superrigid subgroups of solvable Lie groups


Author: Dave Witte
Journal: Proc. Amer. Math. Soc. 125 (1997), 3433-3438
MSC (1991): Primary 22E40; Secondary 22E25, 22E27, 22G05
DOI: https://doi.org/10.1090/S0002-9939-97-04147-6
MathSciNet review: 1423339
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\Gamma $ be a discrete subgroup of a simply connected, solvable Lie group $G$, such that $\operatorname {Ad}_G\Gamma $ has the same Zariski closure as $\operatorname {Ad}G$. If $\alpha \colon \Gamma \to \operatorname {GL}_n(\mathord {\mathbb R})$ is any finite-dimensional representation of $\Gamma $, we show that $\alpha $ virtually extends to a continuous representation $\sigma $ of $G$. Furthermore, the image of $\sigma $ is contained in the Zariski closure of the image of $\alpha $. When $\Gamma $ is not discrete, the same conclusions are true if we make the additional assumption that the closure of $[\Gamma , \Gamma ]$ is a finite-index subgroup of $[G,G] \cap \Gamma $ (and $\Gamma $ is closed and $\alpha $ is continuous).


References [Enhancements On Off] (What's this?)

  • 1. N. Bourbaki, ``Lie Groups and Lie Algebras, Part I,'' Addison-Wesley, Reading, MA, 1975.
  • 2. David Fried and William M. Goldman, Three-dimensional affine crystallographic groups, Adv. in Math. 47 (1983), no. 1, 1–49. MR 689763, https://doi.org/10.1016/0001-8708(83)90053-1
  • 3. G. Hochschild, The structure of Lie groups, Holden-Day, Inc., San Francisco-London-Amsterdam, 1965. MR 0207883
  • 4. G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825
  • 5. V. Platonov, A. Rapinchuk, ``Algebraic Groups and Number Theory,'' Academic Press, Boston, 1994.
  • 6. M. S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, New York-Heidelberg, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68. MR 0507234
    M. Ragunatan, \cyr Diskretnye podgruppy grupp Li., Izdat. “Mir”, Moscow, 1977 (Russian). Translated from the English by O. V. Švarcman; Edited by È. B. Vinberg; With a supplement “Arithmeticity of irreducible lattices in semisimple groups of rank greater than 1” by G. A. Margulis. MR 0507236
  • 7. Dave Witte, Superrigidity of lattices in solvable Lie groups, Invent. Math. 122 (1995), no. 1, 147–193. MR 1354957, https://doi.org/10.1007/BF01231442
  • 8. D. Witte, Archimedean superrigidity of solvable $S$-arithmetic groups, J. Algebra 187 (1997) 268-288.
  • 9. D. P. Zhelobenko, \cyr Kompaktnye gruppy Li i ikh predstavleniya., Izdat. “Nauka”, Moscow, 1970 (Russian). MR 0473097
    D. P. Želobenko, Compact Lie groups and their representations, American Mathematical Society, Providence, R.I., 1973. Translated from the Russian by Israel Program for Scientific Translations; Translations of Mathematical Monographs, Vol. 40. MR 0473098

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 22E40, 22E25, 22E27, 22G05

Retrieve articles in all journals with MSC (1991): 22E40, 22E25, 22E27, 22G05


Additional Information

Dave Witte
Affiliation: Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078
Email: dwitte@math.okstate.edu

DOI: https://doi.org/10.1090/S0002-9939-97-04147-6
Received by editor(s): June 21, 1996
Communicated by: Roe Goodman
Article copyright: © Copyright 1997 American Mathematical Society