Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A monotoneity property of the gamma function


Authors: G. D. Anderson and S.-L. Qiu
Journal: Proc. Amer. Math. Soc. 125 (1997), 3355-3362
MSC (1991): Primary 33B15; Secondary 26A48, 26D07
DOI: https://doi.org/10.1090/S0002-9939-97-04152-X
MathSciNet review: 1425110
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we obtain a monotoneity property for the gamma function that yields sharp asymptotic estimates for $\Gamma (x)$ as $x$ tends to $\infty $, thus proving a conjecture about $\Gamma (x)$.


References [Enhancements On Off] (What's this?)

  • [AS] M. Abramowitz and I. A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover, New York, 1965. MR 31:1400
  • [Ah] L. V. Ahlfors, Complex Analysis, An introduction to the theory of analytic functions of one complex variable, 3rd ed., McGraw-Hill, New York, 1979. MR 80c:30001
  • [A1] H. Alzer, Some gamma function inequalities, Math. Comp. 60 (1993), 337-346. MR 93f:33001
  • [A2] H. Alzer, On some inequalities for the gamma and psi functions, Math. Comp. 66 (1997), 373-389. MR 97e:33004
  • [ABRVV] G. D. Anderson, R. W. Barnard, K. C. Richards, M. K. Vamanamurthy, and M. Vuorinen, Inequalities for zero-balanced hypergeometric functions, Trans. Amer. Math. Soc. 347 (1995), 1713-1723. MR 95m:33002
  • [AVV] G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Special functions of quasiconformal theory, Exposition. Math. 7 (1989), 97-136. MR 90k:30032
  • [BH] J. Böhm and E. Hertel, Polyedergeometrie $n$-dimensionalen Räumen Konstanter Krümmung, Birkhäuser, Basel - Boston - Stuttgart, 1981. MR 82k:52001a
  • [S] J. Sandor, Sur la fonction gamma, Publ. Centre Rech. Math. Pures (I) (Neuchâtel) 21 (1989), 4-7.
  • [SV] D. J. Smith and M. K. Vamanamurthy, How small is a unit ball?, Math. Mag. 62 (1989), 101-107. MR 90e:51029
  • [W] H. F. Weinberger, Partial Differential Equations, John Wiley & Sons, New York, 1965.
  • [WW] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1958. MR 31:2375

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 33B15, 26A48, 26D07

Retrieve articles in all journals with MSC (1991): 33B15, 26A48, 26D07


Additional Information

G. D. Anderson
Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
Email: anderson@math.msu.edu

S.-L. Qiu
Affiliation: School of Science and Arts, Hangzhou Institute of Electronics Engineering (HIEE), Hangzhou 310037, People’s Republic of China

DOI: https://doi.org/10.1090/S0002-9939-97-04152-X
Keywords: Gamma function, psi function, monotoneity, inequalities
Received by editor(s): June 20, 1996
Communicated by: Hal L. Smith
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society