Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Incompleteness of the linear span
of the positive compact operators


Authors: Z. L. Chen and A. W. Wickstead
Journal: Proc. Amer. Math. Soc. 125 (1997), 3381-3389
MSC (1991): Primary 47B65; Secondary 47B07
DOI: https://doi.org/10.1090/S0002-9939-97-04220-2
MathSciNet review: 1443816
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that even in the case of a Banach lattice $E$ with an order continuous norm (or whose dual has an order continuous norm) the linear span of the positive compact operators on $E$ need not be complete under the regular norm.


References [Enhancements On Off] (What's this?)

  • [1] Y. A. Abramovich and A. W. Wickstead, A compact regular operator without modulus, Proc. Amer. Math. Soc. 116 (1992), 721-726. MR 93a:47038
  • [2] Y.A. Abramovich and A.W. Wickstead, Recent results on the order structure of compact operators, Irish Math. Soc. Bulletin 32 (1994), 32-45. MR 95h:47050
  • [3] Y. A. Abramovich and A. W. Wickstead, Solutions of several problems in the theory of compact positive operators, Proc. Amer. Math. Soc. 123 (1995), 3021-3026. MR 95m:47059
  • [4] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press, New York & London, 1985. MR 87h:47086
  • [5] W. Arendt, On the o-spectrum of regular operators and the spectrum of measures, Math.Z. 178 (1981), 271-287. MR 83h:47027
  • [6] W. Arendt and A.R. Sourour, Ideals of regular operators on $\ell ^{2}$, Proc. Amer. Math. Soc. 88 (1983), 93-96. MR 84c:47048
  • [7] W. Arendt and A.R. Sourour, Perturbation of regular operators and the order essential spectrum, Indag. Math. 48 (1986), 109-122. MR 87j:47052
  • [8] P.G. Dodds and D.H. Fremlin, Compact operators in Banach lattices, Israel J. Maths. 34 (1979), 287-320. MR 81g:47037
  • [9] U. Krengel, Über den Absolutbetrag stetiger linearer Operatoren und seine Anwendung auf ergodische Zerlegungen, Math. Scand. 13 (1963), 151-187. MR 31:310
  • [10] U. Krengel, Remark on the modulus of compact operators, Bull. Amer. Math. Soc. 72 (1966), 132-133. MR 32:8162
  • [11] P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, Berlin Heidelberg New York, 1991. MR 93f:46025
  • [12] H. Raubenheimer, The $o$-spectrum of $r$-asymptotically quasi-finite rank operators, Quaest. Math. 7 (1984), 299-303. MR 86c:47050
  • [13] H. Raubenheimer, $R$-asymptotically quasi-finite rank operators and the spectrum of measures,, Quaest. Math. 10 (1986), 97-111. MR 87m:47090
  • [14] A.W. Wickstead, Spaces of operators with the Riesz separation property, Indag. Math. N.S. 6 (1995), 235-245. MR 96g:47032
  • [15] A.W. Wickstead, Converses for the Dodds-Fremlin and Kalton-Saab theorems, Math. Proc. Camb. Phil. Soc. 120 (1996), 175-179. MR 96m:47067

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47B65, 47B07

Retrieve articles in all journals with MSC (1991): 47B65, 47B07


Additional Information

Z. L. Chen
Affiliation: Department of Pure Mathematics, The Queen’s University of Belfast, Belfast BT7 1NN, Northern Ireland

A. W. Wickstead
Affiliation: Department of Pure Mathematics, The Queen’s University of Belfast, Belfast BT7 1NN, Northern Ireland
Email: A.Wickstead@qub.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-97-04220-2
Keywords: Compact operators, regular operators
Received by editor(s): June 26, 1996
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society