Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Statistical Limit Superior and Limit Inferior

Authors: J. A. Fridy and C. Orhan
Journal: Proc. Amer. Math. Soc. 125 (1997), 3625-3631
MSC (1991): Primary 40A05; Secondary 26A03, 11B05
MathSciNet review: 1416085
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Following the concept of statistical convergence and statistical cluster points of a sequence $x$, we give a definition of statistical limit superior and inferior which yields natural relationships among these ideas: e.g., $x$ is statistically convergent if and only if $\textrm{st}\text{-}\textrm{liminf} x= \textrm{st}\text{-}\textrm{limsup} x$. The statistical core of $x$ is also introduced, for which an analogue of Knopp's Core Theorem is proved. Also, it is proved that a bounded sequence that is $C_{1}$-summable to its statistical limit superior is statistically convergent.

References [Enhancements On Off] (What's this?)

  • 1. R. C. Buck, Generalized asymptotic density, Amer. J. Math. 75(1953), 335-346. MR 14:854f
  • 2. J. S. Connor, The statistical and strong $p$-Cesàro convergence of sequences, Analysis 8(1988), 47-63. MR 89k:40013
  • 3. J. S. Connor and M. A. Swardson, Strong integral summability and the Stone-\v{C}ech compactification of the half-line, Pacific J. Math. 157 (1993), 201-224. MR 94f:40007
  • 4. J.S. Connor and M.A. Swardson, Measures and ideals of $C^{\ast}(X)$, Annals N.Y. Acad.Sci. 104 (1994), 80-91. MR 95b:54022
  • 5. J.S. Connor and J. Kline, On statistical limit points and the consistency of statistical convergence, J. Math. Anal. Appl. 197 (1996), 392-399. MR 96m:40001
  • 6. P. Erdös and G. Tenenbaum, Sur les densities de certaines suites d'entries, Proc. London Math. Soc. 59 (1989), 417-438. MR 90h:11087
  • 7. H. Fast, Sur la convergence statistique, Colloq. Math. 2(1951), 241-244. MR 14:29c
  • 8. J.A. Fridy, On statistical convergence, Analysis 5(1985), 301-313. MR 87b:40001
  • 9. \underline{\hspace{.50in}}, Statistical limit points, Proc. Amer. Math. Soc. 118(1993), 1187-1192. MR 94e:40008
  • 10. J. Fridy and C. Orhan, Lacunary statistical summability, J. Math. Anal. Appl. 173 (1993), 497-504. MR 95f:40004
  • 11. J. Fridy and H.I. Miller, A matrix characterization of statistical convergence, Analysis 11 (1991), 59-66. MR 92e:40001
  • 12. G.H. Hardy, Divergent Series, Oxford Univ. Press, London, 1949. MR 11:25a
  • 13. K. Knopp, Zur Theorie der Limitierungsverfahren(Erste Mitteilung), Math. Zeit. 31(1930), 115-127.
  • 14. I.J. Maddox, Steinhaus type theorems for summability matrices, Proc. Amer. Math. Soc. 45(1974), 209-213. MR 51:1192
  • 15. \underline{\hspace{.50in}}, Some analogues of Knopp's Core Theorem, Internat. J. Math. & Math. Sci., 2(1979), 605,-614. MR 81m:40012
  • 16. \underline{\hspace{.50in}}, Statistical convergence in locally convex spaces, Math. Cambridge Phil. Soc. 104 (1988), 141-145. MR 89k:40012
  • 17. H.I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995), 1811-1819. MR 95h:40010
  • 18. I. Niven, H.S. Zuckerman, and H. Montgomery, An Introduction to the Theory of Numbers, Fifth Ed., Wiley, New York, 1991. MR 91i:11001
  • 19. A. Zygmund, Trigonometric Series, 2nd Ed., Cambridge Univ. Press, 1979. MR 58:29731

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 40A05, 26A03, 11B05

Retrieve articles in all journals with MSC (1991): 40A05, 26A03, 11B05

Additional Information

J. A. Fridy
Affiliation: Department of Mathematics, Faculty of Science, Ankara University, Ankara, 06100, Turkey

C. Orhan
Affiliation: Department of Mathematics, Faculty of Science, Ankara University, Ankara, 06100, Turkey

Keywords: Natural density, statistically convergent sequence, statistical cluster point, core of a sequence
Received by editor(s): April 20, 1995
Received by editor(s) in revised form: July 15, 1996
Communicated by: J. Marshall Ash
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society