Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on $p$-hyponormal operators


Author: Tadasi Huruya
Journal: Proc. Amer. Math. Soc. 125 (1997), 3617-3624
MSC (1991): Primary 47A63, 47B20; Secondary 47A10
DOI: https://doi.org/10.1090/S0002-9939-97-04004-5
MathSciNet review: 1416089
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $T$ be a $p$-hyponormal operator on a Hilbert space with polar decomposition $T=U|T|$ and let $ \widetilde T=|T|^{t}U|T|^{r-t}$ for $r>0$ and $r \geq t \geq 0.$ We study order and spectral properties of $ \widetilde {T}.$ In particular we refine recent Furuta's result on $p$-hyponormal operators.


References [Enhancements On Off] (What's this?)

  • 1. A. Aluthge, On $p$-hyponormal operators for 0$<$p$<$1, Integral Equations and Operator Theory 13 (1990), 307-315. MR 91a:47025
  • 2. J.V. Baxley, Some general conditions implying Weyl's Theorem, Rev. Roum. Math. Pures Appl. 16 (1971), 1163-1166. MR 46:4237
  • 3. F.F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, Berlin, 1973. MR 54:11013
  • 4. M. Ch\={o} and T. Huruya, $p$-hyponormal operators for $0<p<1/2$, Comment. Math. 33 (1993), 23-29. MR 95b:47021
  • 5. M. Ch\={o} and M. Itoh, Putnam's inequality for $p$-hyponormal operators, Proc. Amer. Math. Soc. 123 (1995), 2435-2440. MR 95j:47027
  • 6. M. Ch\={o}, M. Itoh and S. \={O}shiro, Weyl's theorem holds for $p$-hyponormal operators, Glasgow Math. J. (to appear).
  • 7. B.P. Duggal, On $p$-hyponormal contractions, Proc. Amer. Math. Soc. 123 (1995), 81-86. MR 95d:47025
  • 8. T. Furuta, $A\geq B\geq 0$ assures $(B^{r}A^{p}B^{r})^{1/q} \geq B^{(p+2r)/q}$ for $r \geq 0,q \geq 0,q \geq 1$ with $(1+2r)q \geq p+2r$, Proc. Amer. Math. Soc. 101 (1987), 85-88. MR 89b:47028
  • 9. -, Generalized Aluthge transformation on $p$-hyponormal operators, Proc. Amer. Math. Soc. 124 (1996), 3071-3075. MR 96m:47041
  • 10. F. Hansen, An operator inequality, Math. Ann. 246 (1980), 325-338. MR 82a:46065
  • 11. K. Löwner, Über monotone matrixfuncktionen, Math. Z. 38 (1934), 177-216.
  • 12. S.M. Patel, A note on $p$-hyponormal operators for 0$<$p$<$1, Integral Equations and Operator Theory 21 (1995), 498-503. MR 96c:47033
  • 13. J.G. Stampfli, Hyponormal operators, Pacific J. Math. 12 (1962), 1453-1458. MR 26:6772
  • 14. K. Tanahashi, Best possibility of the Furuta inequality, Proc. Amer. Math. Soc. 124 (1996), 141-146. MR 96d:47025
  • 15. D. Xia, On the non-normal operators-semi-hyponormal operators, Sci. Sinica 23 (1980), 700-713.
  • 16. -, Spectral Theory of Hyponormal Operators, Birkhäuser Verlag, Basel, 1983. MR 87j:47036

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47A63, 47B20, 47A10

Retrieve articles in all journals with MSC (1991): 47A63, 47B20, 47A10


Additional Information

Tadasi Huruya
Affiliation: Faculty of Education, Niigata University, Niigata 950-21, Japan
Email: huruya@ed.niigata-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-97-04004-5
Keywords: Furuta inequality, hyponormal operator, Weyl spectrum
Received by editor(s): December 28, 1995
Received by editor(s) in revised form: July 12, 1996
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society