Cesàro Transforms of Fourier Coefficients

of -functions

Author:
Jie Xiao

Journal:
Proc. Amer. Math. Soc. **125** (1997), 3613-3616

MSC (1991):
Primary 26D15, 42A05, 42A16

MathSciNet review:
1415377

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note, we show that Cesàro transforms of Fourier cosine or sine coefficients of any -function are Fourier cosine or sine coefficients of some -function.

**1.**E. Alšynbaeva,*Transforms of Fourier coefficients of some classes of functions*, Mat. Zametki**25**(1979), no. 5, 645–651, 798 (Russian). MR**539574****2.**R. L. Anderson and E. Taflin,*Explicit nonsoliton solutions of the Benjamin-Ono equation*, Lett. Math. Phys.**7**(1983), no. 3, 243–248. MR**706214**, 10.1007/BF00400440**3.**G.H. Hardy,*Notes on some points in the integral caculus LXVI*, Messenger Math.**58**(1928), 50-52.**4.**Ching-Tsün Loo,*Note on the properties of Fourier coefficients*, Amer. J. Math.**71**(1949), 269–282. MR**0029440****5.**David A. Stegenga,*Bounded Toeplitz operators on 𝐻¹ and applications of the duality between 𝐻¹ and the functions of bounded mean oscillation*, Amer. J. Math.**98**(1976), no. 3, 573–589. MR**0420326****6.**Elias M. Stein,*Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR**1232192****7.**A. Zygmund,*Trigonometric series: Vols. I, II*, Second edition, reprinted with corrections and some additions, Cambridge University Press, London-New York, 1968. MR**0236587**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
26D15,
42A05,
42A16

Retrieve articles in all journals with MSC (1991): 26D15, 42A05, 42A16

Additional Information

**Jie Xiao**

Email:
jxiao@sxx0.math.pku.edu.cn

DOI:
http://dx.doi.org/10.1090/S0002-9939-97-04040-9

Keywords:
Ces\`{a}ro transforms,
Fourier coefficients

Received by editor(s):
December 11, 1995

Received by editor(s) in revised form:
July 9, 1996

Additional Notes:
The author is partially supported by the National Science Foundation of China

Communicated by:
J. Marshall Ash

Article copyright:
© Copyright 1997
American Mathematical Society