Differential operators having Sobolev type Laguerre polynomials as eigenfunctions

Author:
H. Bavinck

Journal:
Proc. Amer. Math. Soc. **125** (1997), 3561-3567

MSC (1991):
Primary 33C45, 34A35

DOI:
https://doi.org/10.1090/S0002-9939-97-04091-4

MathSciNet review:
1422848

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the polynomials orthogonal with respect to the Sobolev type inner product

where and is a nonnegative integer. It is the purpose of this paper to show that these polynomials are eigenfunctions of a class of linear differential operators containing one that is of finite order if is a nonnegative integer and

**1.**H. Bavinck:*A direct approach to Koekoek's differential equation for generalized Laguerre polynomials.*Acta Math. Hungar.**66 (3)**(1995), 247-253.MR**96a:33009****2.**H. Bavinck:*Linear perturbations of differential or difference operators with polynomials as eigenfunctions.*J. Comp. Appl. Math.**78**(1997), 179-195.**3.**H. Bavinck:*A new result for Laguerre polynomials.*J. Physics A.**29**(1996), L277-L279. CMP**96:15****4.**I.H. Jung, K.H. Kwon and G.J. Yoon:*Differential equations of infinite order for Sobolev-type orthogonal polynomials.*J. Comp. Appl. Math.**78**(1997), 277-293.**5.**A.M. Krall:*Orthogonal polynomials satisfying fourth order differential equations.*Proc. Roy. Soc. Edinburgh,**87A**(1981), 271-288.MR**82d:33021****6.**A.M. Krall and L.L. Littlejohn:*On the classification of differential equations having orthogonal polynomial solutions II.*Ann. Mat. Pura Appl. (4)**149**(1987), 77-102. MR**89e:34017****7.**H.L. Krall:*On orthogonal polynomials satisfying a certain fourth order differential equation.*The Pennsylvania State College Studies, No. 6, The Pennsylvania State College, State College, Pa., 1940.**8.**L.L. Littlejohn:*An application of a new theorem on orthogonal polynomials and differential equations.*Quaestiones Math.**10**(1986), 49-61.MR**87m:42021****9.**J. Koekoek and R. Koekoek:*On a differential equation for Koornwinder's generalized Laguerre polynomials.*Proc. Amer. Math. Soc.**112**, 1991, 1045-1054.MR**91j:33008****10.**J. Koekoek , R. Koekoek and H. Bavinck:*On differential equations for Sobolev-type Laguerre polynomials.*TUDelft Fac. Techn. Math. & Inf. Report 95-79*.*To appear in Trans. Amer. Math. Soc.**11.**R. Koekoek:*Generalizations of the classical Laguerre polynomials.*J. Math. Anal. Appl.**153**(1990), 576-590. MR**92d:33016****12.**R. Koekoek:*Generalizations of the classical Laguerre polynomials and some*-*analogues.*Thesis Delft University of Technology 1990.**13.**T.H. Koornwinder:*Orthogonal polynomials with weight function*Canad. Math. Bull.**27**(2), 1984, 205-214.MR**85i:33011****14.**F. Marcellán and A. Ronveaux:*On a class of polynomials orthogonal with respect to a Sobolev inner product.*Indag. Math. N.S.**1**(1990), 451-464.MR**92f:42029**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
33C45,
34A35

Retrieve articles in all journals with MSC (1991): 33C45, 34A35

Additional Information

**H. Bavinck**

Affiliation:
Delft University of Technology, Faculty of Technical Mathematics and Informatics, Mekelweg 4, 2628 CD Delft, The Netherlands

Email:
bavinck@twi.tudelft.nl

DOI:
https://doi.org/10.1090/S0002-9939-97-04091-4

Keywords:
Differential operators,
Sobolev type Laguerre polynomials

Received by editor(s):
June 27, 1996

Communicated by:
Christopher D. Sogge

Article copyright:
© Copyright 1997
American Mathematical Society