Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Invariance of the ${L_p}$ Spectrum
for Hypoelliptic Operators


Authors: Hans-Gerd Leopold and Elmar Schrohe
Journal: Proc. Amer. Math. Soc. 125 (1997), 3679-3687
MSC (1991): Primary 35P05, 35H05, 47G30
DOI: https://doi.org/10.1090/S0002-9939-97-04123-3
MathSciNet review: 1423315
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the spectra of the $L_p$-realizations for a class of hypoelliptic (pseudo-)differential operators are independent of $p$ in an interval around $p=2$ depending on the growth properties of the symbol. For elliptic operators we obtain the classical boundedness interval of Fefferman; in the general case we obtain a smaller interval which is as large as one can possibly expect it to be.


References [Enhancements On Off] (What's this?)

  • 1. Alvarez, J., and Hounie, J.: Spectral invariance and tameness of pseudo-differential operators on weighted Sobolev spaces, J. Operator Theory 30, 41 - 67 (1993). MR 95j:47062
  • 2. Arendt, W.: Gaussian estimates and interpolation of the spectrum in $L^p$, Differential Integral Equations 7, 1153 - 1168 (1993). MR 95e:47066
  • 3. Beals, R.: Characterization of pseudodifferential operators and applications, Duke Math. Journal 44, 5 - 57 (1977). ibid., 46, 215 (1979). MR 55:8884; MR 80b:47062
  • 4. Davies, E. B.: Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge 1989. MR 92a:35035
  • 5. Davies, E. B.: $L^p$ spectral independence and $L^1$ analyticity, J. London Math. Soc. 52, 177 - 184 (1995). MR 96e:47034
  • 6. Davies, E. B., Simon, B., and Taylor, M.: $L^p$ spectral theory of Kleinian groups, J. Funct. Anal. 78, 116 - 136 (1988). MR 89m:58205
  • 7. Fefferman, C.: $L^p$-bounds for pseudo-differential operators, Israel J. Math. 14 , 413-417 (1973). MR 49:1227
  • 8. Gohberg, I., and Krupnik, N.: Einführung in die Theorie der eindimensionalen singulären Integraloperatoren, Birkhäuser, Basel 1979. MR 81d:45010
  • 9. Hempel, R., and Voigt, J.: The spectrum of a Schrödinger operator on $L_p(\mathbb R^\nu)$ is $p$-independent, Comm. Math. Phys. 104, 243 - 250 (1986). MR 87h:35247
  • 10. Hieber, M.: $L^p$ spectra of pseudodifferential operators generating integrated semigroups, Transactions Am. Math. Soc. 347, 4023 - 4035 (1995). MR 95m:47099
  • 11. Illner, R.: On algebras of pseudodifferential operators in $L^p$, Comm. Partial Diff. Equations 2, 359 - 393 (1977). MR 56:1137b
  • 12. Kumano-go, H.: Pseudo-Differential Operators, Massachusetts Institute of Technology Press, Cambridge (Massachusetts)-London 1981. MR 84c:35113
  • 13. Kumano-go, H., and Tsutsumi, C.: Complex powers of hypoelliptic pseudo-differential operators with applications, Osaka Journal Math. 10, 147 - 174 (1973). MR 48:6734
  • 14. Leopold, H.-G., and Schrohe, E.: Spectral invariance for algebras of pseudodifferential operators on Besov-Triebel-Lizorkin spaces, manuscripta math. 78, 99 - 110 (1993). MR 93m:47061
  • 15. Schechter, M.: Spectra of Partial Differential Operators, 2.ed. North-Holland, Amsterdam, New York, Oxford 1986. MR 88h:35085
  • 16. Schrohe, E.: Boundedness and spectral invariance for standard pseudodifferential operators on anisotropically weighted $L^p$-Sobolev spaces, Integral Equations Operator Theory 13, 271 - 284 (1990). MR 91b:47121
  • 17. Schrohe, E.: Fréchet Algebras of Pseudodifferential Operators and Boundary Value Problems, Birkhäuser, Basel (to appear).
  • 18. Sturm, K.-Th.: On the $L^p$ spectrum of uniformly elliptic operators on Riemannian manifolds, J. Funct. Anal. 118, 442 - 453 (1993). MR 94m:58227
  • 19. Ueberberg, J.: Zur Spektralinvarianz von Algebren von Pseudodifferentialoperatoren in der $L^p$-Theorie, manuscripta math. 61, 459 - 475 (1988). MR 89g:47070
  • 20. Widom, H.: Singular integral equations in $L^p$, Transactions Am. Math. Soc. 97, 131 - 160 (1960). MR 22:9830
  • 21. Wong, M.W.: Spectra of pseudo-differential operators on $L^p(R^n)$, Comm. Partial Diff. Equations 4, 1389 - 1401 (1979). MR 81a:47052

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 35P05, 35H05, 47G30

Retrieve articles in all journals with MSC (1991): 35P05, 35H05, 47G30


Additional Information

Hans-Gerd Leopold
Affiliation: Mathematisches Institut, Fakultät für Mathematik und Informatik, Friedrich- Schiller-Universität Jena, D-07740 Jena, Germany
Email: leopold@minet.uni-jena.de

Elmar Schrohe
Affiliation: Max-Planck-Arbeitsgruppe “Partielle Differentialgleichungen und Komplexe Ana- lysis”, Universität Potsdam, D-14415 Potsdam, Germany
Email: schrohe@mpg-ana.uni-potsdam.de

DOI: https://doi.org/10.1090/S0002-9939-97-04123-3
Keywords: $L_p$-spectrum, spectral independence, hypoelliptic pseudodifferential operators
Received by editor(s): July 29, 1996
Additional Notes: The first author was supported in part by DFG-contract Tr 374/1-1
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society