Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Counting elliptic plane curves
with fixed $j$-invariant


Author: Rahul Pandharipande
Journal: Proc. Amer. Math. Soc. 125 (1997), 3471-3479
MSC (1991): Primary 14N10, 14H10; Secondary 14E99
MathSciNet review: 1423328
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The number of degree $d$ elliptic plane curves with fixed $j$-invariant passing through $3d-1$ general points in $% \mathbf{P}^2$ is computed.


References [Enhancements On Off] (What's this?)

  • [A] V. Alexeev, Moduli spaces $M_{g,n}(W)$ for Surfaces, preprint 1994.
  • [Al] Paolo Aluffi, How many smooth plane cubics with given 𝑗-invariant are tangent to 8 lines in general position?, Enumerative algebraic geometry (Copenhagen, 1989) Contemp. Math., vol. 123, Amer. Math. Soc., Providence, RI, 1991, pp. 15–29. MR 1143545 (93e:14063), http://dx.doi.org/10.1090/conm/123/1143545
  • [B-M] K. Behrend and Yu. Manin, Stacks of stable maps and Gromov-Witten invariants, Duke Math. J. 85 (1996), 1-60.
  • [F-P] W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Proc. Amer. Math. Soc. (to appear).
  • [DF-I] P. Di Francesco and C. Itzykson, Quantum intersection rings, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 81–148. MR 1363054 (96k:14041a)
  • [I] E.-M. Ionel, Michigan State University Ph.D. thesis, (1996).
  • [K-Q-R] S. Katz, Z. Qin, and Y. Ruan, Composition law and nodal genus-2 curves in $\mathbf P^2$, preprint 1996.
  • [K] Maxim Kontsevich, Enumeration of rational curves via torus actions, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 335–368. MR 1363062 (97d:14077)
  • [K-M] M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562. MR 1291244 (95i:14049)
  • [R-T] Y. Ruan and G. Tian, A mathematical theory of quantum cohomology, J. Diff. Geom. 42 (1995), 259-367.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 14N10, 14H10, 14E99

Retrieve articles in all journals with MSC (1991): 14N10, 14H10, 14E99


Additional Information

Rahul Pandharipande
Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
Email: rahul@math.uchicago.edu

DOI: http://dx.doi.org/10.1090/S0002-9939-97-04136-1
PII: S 0002-9939(97)04136-1
Keywords: Gromov-Witten invariants, elliptic curves, enumerative geometry
Received by editor(s): June 19, 1996
Additional Notes: Partially supported by an NSF Post-Doctoral Fellowship
Communicated by: Ron Donagi
Article copyright: © Copyright 1997 American Mathematical Society