THE RANK STABLE TOPOLOGY OF INSTANTONS ON \mathbb{CP}^2

JIM BRYAN AND MARC SANDERS

(Communicated by Ronald A. Fintushel)

Abstract. Let \mathcal{M}_k^n be the moduli space of based (anti-self-dual) instantons on \mathbb{CP}^2 of charge k and rank n. There is a natural inclusion $\mathcal{M}_k^n \hookrightarrow \mathcal{M}_k^{n+1}$. We show that the direct limit space \mathcal{M}_k^∞ is homotopy equivalent to $BU(k) \times BU(k)$. Let ℓ_∞ be a line in the complex projective plane and let \mathbb{CP}^2 be the blow-up at a point away from ℓ_∞. \mathcal{M}_k^n can be alternatively described as the moduli space of rank n holomorphic bundles on \mathbb{CP}^2 with $c_1 = 0$ and $c_2 = k$ and with a fixed holomorphic trivialization on ℓ_∞.

1. Introduction

In his 1989 paper [Ta], Taubes studied the stable topology of the based instanton moduli spaces. He showed that if $\mathcal{M}_k^n(X)$ denotes the moduli space of based $SU(n)$-instantons of charge k on X, then there is a map $\mathcal{M}_k^n(X) \to \mathcal{M}_k^{n+1}(X)$ and, in the direct limit topology, $\mathcal{M}_k^\infty(X)$ has the homotopy type of $\text{Map}_0(X, BSU(n))$.

There is also a map $\mathcal{M}_k^n(X) \hookrightarrow \mathcal{M}_k^{n+1}(X)$ given by the direct sum of a connection with the trivial connection on a trivial line bundle and one can consider the direct limit $\mathcal{M}_k^\infty(X)$. For the case of $X = S^4$ with the round metric, it was shown by Kirwan and also by Sanders ([Kir], [Sa]) that the direct limit has the homotopy type of $BU(k)$.

In this note we consider the case of $X = \mathbb{CP}^2$ where \mathbb{CP}^2 denotes the complex projective plane with the Fubini-Study metric and the opposite orientation of the one induced by the complex structure. Our result is:

Theorem 1.1. $\mathcal{M}_k^\infty(\mathbb{CP}^2)$ has the homotopy type of $BU(k) \times BU(k)$.

The main tool in the proof of the theorem is a construction of the moduli spaces $\mathcal{M}_k^\infty(\mathbb{CP}^2)$ due to King [Ki]. In general, Buchdahl [Bu] has shown that, for appropriate metrics on the N-fold connected sum $\#_N \mathbb{CP}^2$, the moduli spaces $\mathcal{M}_k^\infty(\#_N \mathbb{CP}^2)$ are diffeomorphic to certain spaces of equivalence classes of holomorphic bundles on \mathbb{CP}^2 blown-up at N points. The universal $U(k) \times U(k)$ bundle that appears giving the homotopy equivalence of Theorem 1.1 can be constructed as higher direct image bundles (see section 3).

Remark 1.1. The cofibration $S^2 \to \mathbb{CP}^2 \to S^4$ gives rise to the fibration of mapping spaces $\Omega^4 BSU(n) \to \text{Map}_\ast(\mathbb{CP}^2, BSU(n)) \to \Omega^2 BSU(n)$ which for K-theoretic

Received by the editors August 2, 1996.
1991 Mathematics Subject Classification. Primary 58D27, 53C07, 55R45, 14Dxx.
reasons is a trivial fibration in the limit over \(n \). The total space of this fibration is homotopy equivalent to the space of based gauge equivalence classes of all connections on \(\mathbb{CP}^2 \). Thus, from Taubes’ result, \(\mathcal{M}_k^\infty \) must have the property that taking the limit over \(k \) gives \(BU \times BU \). For \(S^4 \), similar remarks imply that \(\lim_{k \to \infty} \mathcal{M}_k^\infty(S^4) \simeq BU \) and the inclusion of \(\mathcal{M}_k^\infty(S^4) \) into this limit has been shown to be (up to homotopy) the natural inclusion \(BU(k) \hookrightarrow BU \) ([Sa]). Theorem 1.1 and these results for \(S^4 \) suggest a general conjecture which is supported by the fact that the higher direct image bundle giving our homotopy equivalence generalizes in an appropriate way.

Conjecture 1.1. For appropriate metrics on \(\#_N \mathbb{CP}^2 \), \(\mathcal{M}_k^\infty(\#_N \mathbb{CP}^2) \) has the homotopy type of a product \(BU(k) \times \cdots \times BU(k) \) with \(N + 1 \) factors.

Remark 1.2. Combining Theorem 1.1 with Taubes’ stabilization result leads to an alternate proof of Bott periodicity for the unitary group. There is a natural map \(\Phi : M \to \Omega \), and their relationships to those on \(S \). As an amusing corollary, we will be able to rederive many of the Bott periodicity relationships among \(Sp, U, SO \), and their homogeneous spaces.

2. **The Construction of \(\mathcal{M}_k^n(\mathbb{CP}^2) \)**

Let \(x_0 \in \mathbb{CP}^2 \) be the base point. Since \(\mathbb{CP}^2 \setminus \{x_0\} \) is conformally equivalent to \(\hat{C}^2 \), the complex plane blown-up at the origin, \(\mathcal{M}_k^n(\mathbb{CP}^2) \), can be regarded as instantons on \(\hat{C}^2 \) based “at infinity”. Buchdahl [Bu] proved an analogue in this non-compact setting of Donaldson’s theorem relating instantons to holomorphic bundles: Let \(\hat{C}^2_N \) be the complex plane blown-up at \(N \) points with a Kähler metric. Then \(\hat{C}^2_N \) has a “conformal compactification” to \(\#_N \hat{\mathbb{CP}^2} \) and a “complex compactification” to \(\hat{\mathbb{CP}^2}_N \) (the projective plane blown-up at \(N \) points). We have added a point \(x_0 \) in the former case and a complex projective line \(\ell_\infty \) in the latter.

Define \(\mathcal{M}_{\text{alg},k}^n(\mathbb{CP}^2_N) \) to be the moduli space consisting of pairs \((\mathcal{E}, \tau) \) where \(\mathcal{E} \) is a rank \(n \) holomorphic bundle on \(\mathbb{CP}^2_N \) with \(c_1(\mathcal{E}) = 0, c_2(\mathcal{E}) = k \), and where \(\tau : \mathcal{E}|_{\ell_\infty} \to \mathbb{C}^n \otimes \mathcal{O}_{\ell_\infty} \) is a holomorphic trivialization of \(\mathcal{E} \) on \(\ell_\infty \).

There is a natural map \(\Phi : \mathcal{M}_k^n(\#_N \mathbb{CP}^2) \to \mathcal{M}_{\text{alg},k}^n(\mathbb{CP}^2_N) \) defined as follows. Let \(p : \mathbb{CP}^2_N \to \#_N \mathbb{CP}^2 \) be the map that collapses \(\ell_\infty \mapsto x_0 \). If \([A] \in \mathcal{M}_k^n \).
then the $\bar{\partial}$ operator that defines the holomorphic bundle $\mathcal{V} = \Phi(A)$ is taken to be $(\hat{d}_{\nu}(A))^{(0,1)}$, the anti-holomorphic part of the covariant derivative defined by the pullback of the connection. The anti-self-duality of A implies that the curvature of $p^*(A)$ is a $(1,1)$-form and so $\bar{\partial}^2 = 0$.

Buchdahl’s theorem is then

Theorem 2.1. The map $\Phi : \mathcal{M}^n_{\mathbb{C}}(\#_N \mathbb{CP}^2) \rightarrow \mathcal{M}^n_{\text{alg}, k}(\mathbb{CP}^2)$ is a diffeomorphism.

The case $N = 1$ was first proved by King [Ki]. We now restrict ourselves to that case and simply write \mathcal{M}^n_k for $\mathcal{M}^n(\mathbb{CP}^2)$ and $\mathcal{M}^n_{\text{alg}, k}(\mathbb{CP}^2)$.

King constructed \mathcal{M}^n_k explicitly in terms of linear algebra data. We recall his construction. Consider configurations of linear maps:

$$
\begin{array}{c}
W_0 \\
\downarrow \quad a_1, a_2 \\
\downarrow x \\
W_1 \\
\downarrow c \\
V_\infty
\end{array}
$$

where W_0, W_1 and V_∞ are complex vector spaces of dimensions k, k, and n respectively.

A configuration (a_1, a_2, b, c, x) is called **integrable** if it satisfies the equation

$$a_1 xa_2 - a_2 xa_1 + bc = 0.$$

A configuration (a_1, a_2, b, c, x) is **non-degenerate** if it satisfies the following conditions:

$$\forall (\lambda_1, \lambda_2), (\mu_1, \mu_2) \in \mathbb{C}^2 \text{ such that } \lambda_1 \mu_1 + \lambda_2 \mu_2 = 0 \text{ and } (\mu_1, \mu_2) \neq (0,0),$$

$$\forall v \in W_1 \text{ such that } \begin{cases} xa_1 v = \lambda_1 v, & (\mu_1 a_1 + \mu_2 a_2) v = 0, \\ xa_2 v = \lambda_2 v, & cv = 0, \end{cases}$$

and $\forall w \in W_0^*$ such that

$$\begin{cases} x^* a_1^* w = \lambda_1 w, & (\mu_1 a_1^* + \mu_2 a_2^*) w = 0, \\ x^* a_2^* w = \lambda_2 w, & b^* w = 0. \end{cases}$$

Let A^n_k be the space of all integrable non-degenerate configurations. $G = \text{Gl}(W_0) \times \text{Gl}(W_1)$ acts canonically on A^n_k. The action is explicitly given by

$$(g_0, g_1) \cdot (a_1, a_2, b, c, x) = (g_0 a_1 g_1^{-1}, g_0 a_2 g_1^{-1}, g_0 b, c g_1^{-1}, g_1 x g_0^{-1}).$$

Theorem 2.2. The moduli space \mathcal{M}^n_k is isomorphic to A^n_k / G.

Proof. King uses such configurations to determine monads that in turn determine holomorphic bundles. Configurations in the same G orbit determine the same bundle. For the sake of brevity we refer the reader to [Ki] or [Br] for details. The construction identifies the vector spaces W_0 and W_1 canonically as $H^1(\mathcal{E}(-\ell_{\infty}))$ and $H^1(\mathcal{E}(-\ell_{\infty} + E))$ respectively, where $E \subset \mathbb{CP}^2$ is the exceptional divisor. The vector space V_∞ is identified with the fiber over ℓ_{∞}.
3. Proof of Theorem 1.1

We prove the theorem in two steps: We first show that the space of monad data A_k^n forms a principal $G = Gl(k) \times Gl(k)$ bundle over M_k^n. We then show that the induced G-equivariant inclusion $A_k^n \hookrightarrow A_k^{n+2}$ is null-homotopic so that we can conclude that A_k^∞ is contractible.

Lemma 3.1. G acts freely on the space of monad data A_k^n.

Proof. This is essentially proved in [Ki] where it is implicitly shown that the non-degeneracy conditions are precisely the conditions that guarantee freeness. We point out that this also follows more conceptually from the existence of a universal family $E \to M_k^n \times \mathbb{C}P^2$ and the cohomological interpretation of W_0 and W_1:

First, the existence of a universal family can be shown via the gauge theoretic construction: Let V be a smooth hermitian vector bundle on $\mathbb{C}P^2$ with $c_1(V) = 0$ and $c_2(V) = k$. Let $A_{0,1}^{1,1}$ denote unitary connections on V with curvature of pure type $(1, 1)$ and that restrict to the trivial connection on ℓ_∞ and let \mathcal{G}_0^C denote the complex gauge transformations of V that are the identity restricted to ℓ_∞. Then $M_k^n = A_{0,1}^{1,1}/\mathcal{G}_0^C$. The quotient

$$(A_{0,1}^{1,1} \times V)/\mathcal{G}_0^C \to M_k^n \times \mathbb{C}P^2$$

will form a universal bundle if the moduli space is smooth and no $E \in M_k^n$ has non-trivial automorphisms (cf. [Fr-Mo] Chapt. IV):

Lemma 3.2. M_k^n is smooth and any $E \in M_k^n$ has no non-trivial automorphisms preserving $\tau : E|_{\ell_\infty} \to C^n \otimes O_{\ell_\infty}$.

By Serre duality $H^2(E \otimes E^*) = H^0(E \otimes E^* \otimes K)^*$. Since $E \otimes E^*$ is trivial on ℓ_∞, it is also trivial on nearby lines. Any section of $E \otimes E^* \otimes K$ restricts to a section of $C^n \otimes O_{\ell_\infty}(-3)$ and so must vanish on ℓ_∞. Likewise, it must vanish on nearby lines and so it is 0 on an open set and must be identically 0. Thus $H^2(E \otimes E^*) = 0$ and smoothness follows once we show there are no automorphisms.

Suppose that there exists an automorphism $\phi \in H^0(E \otimes E^*)$ such that $\phi \neq 1$ and ϕ preserves τ so that $\phi|_{\ell_\infty} = 1|_{\ell_\infty}$. Then $\phi - 1$ is a non-zero section of $E \otimes E^*$ vanishing on ℓ_∞. We then get an injection $0 \to O(\ell_\infty) \to E \otimes E^*$. Restricting this sequence to ℓ_∞ we get an injection $0 \to O_{\ell_\infty}(1) \to O_{\ell_\infty} \otimes C^n^2$ which is a contradiction.

Let $\pi : M_k^n \times \mathbb{C}P^2 \to M_k^n$. The higher direct image sheaves $R^1\pi_*(E(-\ell_\infty))$ and $R^1\pi_*(E(-\ell_\infty + E))$ are locally free and rank k. This follows from the index theorem and the vanishing of the H^0 and H^2 cohomology of $E(-\ell_\infty)$ and $E(-\ell_\infty + E)$. The H^0 vanishing follows by again considering the restriction of a section of the bundles to lines nearby to ℓ_∞. Using Serre duality and the same argument, one gets the vanishing for H^2.

Consequently the vector spaces W_0 and W_1 are the fibers of the vector bundles $R^1\pi_*(E(-\ell_\infty))$ and $R^1\pi_*(E(-\ell_\infty + E))$. The G-orbit of a configuration giving a bundle \mathcal{E} can be identified with the group of isomorphisms $g_0 : H^1(\mathcal{E}(\ell_\infty)) \to C^k$ and $g_1 : H^1(\mathcal{E}(\ell_\infty + E)) \to C^k$. Thus A_k^n is realized precisely as the total space of
the principal $\text{Gl}(k) \times \text{Gl}(k)$ bundle associated to

$$R^1\pi_*(\mathcal{E}(-\ell_\infty)) \oplus R^1\pi_*(\mathcal{E}(-\ell_\infty + E)).$$

Recall that the map $\mathcal{M}_k^n \hookrightarrow \mathcal{M}_k^{n+1}$ is defined by the direct sum with the trivial connection: $[A] \mapsto [A \oplus \theta]$. In terms of holomorphic bundles this is $\mathcal{E} \hookrightarrow \mathcal{E} \oplus \mathcal{O}$. Tracing through the monod construction, it is easy to see that the inclusion induces the G-equivariant map $A_k^n \hookrightarrow A_k^{n+1}$ given by $(a_1, a_2, x, b, c) \mapsto (a_1, a_2, x, b', c')$ where b' is b with an extra first column of zeroes and c' is c with an extra first row of zeroes. Define A_k^∞ to be the direct limit $\lim_{n \to \infty} A_k^n$ so that there is a homeomorphism between \mathcal{M}_k^n and A_k^n/G.

Lemma 3.3. A_k^∞ is a contractible space.

Proof. Since the A_k^n's are algebraic varieties and the maps $A_k^n \to A_k^{n+1}$ are algebraic, they admit triangulations compatible with the maps. Thus A_k^∞ inherits the structure of a CW-complex and so it is sufficient to show that all of its homotopy groups are zero. To this end we prove that for any k and l there is an $r > l$ such that the natural inclusion from $A_k^n \hookrightarrow A_k^r$ is homotopically trivial.

Consider the homotopy $H_t : A_k^n \to A_k^{2k+n}$ defined as follows:

$$H_t((a_1, a_2, x, b, c)) = ((1-t)a_1, (1-t)a_2, (1-t)x, b_t, c_t)$$

where

$$c_t = \begin{pmatrix} tI_k \\ 0_{k,k} \\ (1-t)c \end{pmatrix}, \quad b_t = (0_{k,k}, tI_k, (1-t)^2b),$$

I_k is the $k \times k$ identity matrix and $0_{k,k}$ is the $k \times k$ zero matrix. To see that $H_t(v) \in A_k^{2k+n}$ for any $v \in A_k^n$, we check that the integrability and non-degeneracy conditions are satisfied for all $0 \leq t \leq 1$. Integrability holds because $b_t c_t = (1-t)^3bc$. Non-degeneracy is satisfied for all $t \neq 0$ because there is a full rank $k \times k$ block, tI_k, in both c_t and b_t. Furthermore, H_0 is just the inclusion $A_k^n \hookrightarrow A_k^{2k}$, so non-degeneracy also holds when $t = 0$. Finally, note that H_1 is a constant map.

These lemmas show that A_k^∞ is a contractible space acted on freely by $G = \text{Gl}(k) \times \text{Gl}(k)$ and $A_k^\infty/G = \mathcal{M}_k^\infty$. Thus \mathcal{M}_k^∞ is homotopic to BG which in turn has the homotopy type of $BU(k) \times BU(k)$. We end by remarking that the proof shows that the universal $U(k) \times U(k)$ bundle is the bundle that restricts to any of the finite \mathcal{M}_k^n's as $R^1\pi_*(\mathcal{E}(-\ell_\infty)) \oplus R^1\pi_*(\mathcal{E}(-\ell_\infty + E))$.

References

[Sa] Sanders, M., Classifying spaces and dirac operators coupled to instantons, Trans. of the A.M.S. Vol. 347, No. 10 1995. MR 96m:58030

Mathematical Sciences Research Institute, 1000 Centennial Drive, Berkeley, California 94720-5070

E-mail address: jbryan@msri.org

Department of Mathematics and Computer Science, Dickinson College, Carlisle, Pennsylvania 17013

E-mail address: sandersm@dickinson.edu