A hyperbolic-by-hyperbolic hyperbolic group

Author:
Lee Mosher

Journal:
Proc. Amer. Math. Soc. **125** (1997), 3447-3455

MSC (1991):
Primary 20F32; Secondary 57M07, 20F28

MathSciNet review:
1443845

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a short exact sequence of finitely generated groups

it is known that if and are word hyperbolic, and if is nonelementary, then is word hyperbolic. In the original examples due to Thurston, as well as later examples due to Bestvina and Feighn, the group is elementary. We give a method for constructing examples where all three groups are nonelementary.

**[BC88]**Andrew J. Casson and Steven A. Bleiler,*Automorphisms of surfaces after Nielsen and Thurston*, London Mathematical Society Student Texts, vol. 9, Cambridge University Press, Cambridge, 1988. MR**964685****[BF92]**M. Bestvina and M. Feighn,*A combination theorem for negatively curved groups*, J. Differential Geom.**35**(1992), no. 1, 85–101. MR**1152226****[BFH96]**M. Bestvina, M. Feighn, and M. Handel,*Laminations, trees, and irreducible automorphisms of free groups*, Geometric and Functional Analysis (1997), to appear.**[Bir74]**Joan S. Birman,*Braids, links, and mapping class groups*, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 82. MR**0375281****[BLM83]**Joan S. Birman, Alex Lubotzky, and John McCarthy,*Abelian and solvable subgroups of the mapping class groups*, Duke Math. J.**50**(1983), no. 4, 1107–1120. MR**726319**, 10.1215/S0012-7094-83-05046-9**[Can91]**J. Cannon,*The theory of negatively curved spaces and groups*, Ergodic theory, symbolic dynamics, and hyperbolic spaces (C. Series T. Bedford, M. Keane, ed.), Oxford Univ. Press, 1991. CMP**92:02****[CT]**J. Cannon and W. P. Thurston,*Group invariant Peano curves*, preprint.**[FLP79]***Travaux de Thurston sur les surfaces*, Astérisque, vol. 66, Société Mathématique de France, Paris, 1979 (French). Séminaire Orsay; With an English summary. MR**568308****[Mas94]**H. Masur, 1994, private correspondence.**[McC85]**John McCarthy,*A “Tits-alternative” for subgroups of surface mapping class groups*, Trans. Amer. Math. Soc.**291**(1985), no. 2, 583–612. MR**800253**, 10.1090/S0002-9947-1985-0800253-8**[Mil68]**J. Milnor,*A note on curvature and fundamental group*, J. Differential Geometry**2**(1968), 1–7. MR**0232311****[Mit]**M. Mitra,*Cannon-Thurston maps for hyperbolic group extensions*, Topology (1997), to appear.**[Mos96]**Lee Mosher,*Hyperbolic extensions of groups*, J. Pure Appl. Algebra**110**(1996), no. 3, 305–314. MR**1393118**, 10.1016/0022-4049(95)00081-X**[Ota96]**Jean-Pierre Otal,*Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3*, Astérisque**235**(1996), x+159 (French, with French summary). MR**1402300****[RS95]**E. Rips and Z. Sela,*Cyclic splittings of finitely presented groups and the canonical JSJ decomposition*, Annals of Math. (1997), to appear.**[Sti87]**J. Stillwell,*The Dehn-Nielsen theorem*, Papers on group theory and topology, by M. Dehn (J. Stillwell transl.), Springer, 1987.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
20F32,
57M07,
20F28

Retrieve articles in all journals with MSC (1991): 20F32, 57M07, 20F28

Additional Information

**Lee Mosher**

Affiliation:
Department of Mathematics and Computer Science, Rutgers University, Newark, New Jersey 07102

Email:
mosher@andromeda.rutgers.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-97-04249-4

Received by editor(s):
May 4, 1996

Additional Notes:
Partially supported by NSF grant # DMS-9204331

Communicated by:
Ronald M. Solomon

Article copyright:
© Copyright 1997
American Mathematical Society