Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Une remarque sur l'orthogonalité de l'image
au noyau d'une dérivation généralisée


Authors: M. Benlarbi Delai, S. Bouali and S. Cherki
Journal: Proc. Amer. Math. Soc. 126 (1998), 167-171
MSC (1991): Primary 47B47, 47A30, 47B20; Secondary 47B10
DOI: https://doi.org/10.1090/S0002-9939-98-03996-3
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we introduce the notion of the pair $(A,B)$ of operators having the Fuglede-Putnam property in a two-sided ideal of $L(H)$. The characterization of this class allows us to generalize the recent result of F. Kittaneh. We also give some applications of this result.


References [Enhancements On Off] (What's this?)

  • 1. Anderson, J. H., On normal derivations, Proc. Amer. Math Soc. 38 (1973), 135-140. MR 47:875
  • 2. Bouali, S. & Charles, J., Extention de la notion d'opérateur $D$-symétrique, I, Acta Sci. Math. 58 (1993), 517-525. MR 95e:47048
  • 3. Bouali, S. & Charles, J., Extention de la notion d'opérateur $D$-symétrique II, Linear Algebra and its Applications 225: (1995), 175-185.
  • 4. Bouali, S. & Cherki, S., Approximation by Generalized Commutators, Acta. Sci. Math. 63 (1997), 15-20.
  • 5. Duggal, B. P., A remark on normal derivations of Hilbert-Schmidt Type, Monatsh. Math. 112: (1991), 265-270. MR 92m:47067
  • 6. Fuglede, B., A commutativity theorem for normal operators, Proc. Nat. Acad. Sci. 36 (1950), 35-40. MR 11:371c
  • 7. Gohberg & Krein, M. G., Introduction to the theory of linear nonselfadjoint operators, Transl. Math. monographs 18A (1969). MR 39:7447
  • 8. Kittaneh, F., On the commutants modulo $C_p$ of $A^2$ and $A^3$, J. Austral. Math. 41 (1986), 47-50. MR 87k:47047
  • 9. Kittaneh, F., Normal derivations in Hilbert-Schmidt type, Glasgow Math. J. 29 (1987), 245-248. MR 88k:47049
  • 10. Kittaneh, F., Normal derivations in norm ideals, Proc. Amer. Math. Soc. 123: n6 (1995), 1779-1785. MR 95g:47054
  • 11. Maher, P. J., Commutator approximants, Proc. Amer. Math. Soc. Vol. 115: n 4 (1992), 995-1000. MR 92j:47059
  • 12. Takahashi, K., On the converse of the Fuglede-Putnam Theorem, Acta. Sci. Math. 43: (1981), 123-125. MR 82g:47018
  • 13. Tong, Y., Kernels of generalized derivations, Acta Sci. Math. 54 1-2 (1990), 159-169. MR 92f:47032
  • 14. Yoshino, T., Subnormal operator with a cyclic vector, Tohoku Math. J. 21: (1969), 47-55. MR 39:7450
  • 15. Yoshino, T., Remark on the generalized Putnam-Fuglede Theorem, Proc. Amer. Math. Soc. 95 n 4: (1985), 571-572. MR 87i:47034

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47B47, 47A30, 47B20, 47B10

Retrieve articles in all journals with MSC (1991): 47B47, 47A30, 47B20, 47B10


Additional Information

M. Benlarbi Delai
Affiliation: Université II, Place Eugène Bataillon, Département de Mathématiques, 34095 Montpellier Cedex 5, France; Faculté des Sciences, Mohammed V, Département de Mathématiques et d’Informatique, Rabat, Morocco

S. Bouali
Affiliation: Faculté des Sciences, Ibn Tofail, Département de Mathématiques et d’Informatique, Kenitra, Morocco

S. Cherki
Affiliation: Faculté des Sciences et Techniques, Département de Mathématiques, Tanger, Maroc

DOI: https://doi.org/10.1090/S0002-9939-98-03996-3
Keywords: Generalized derivation, Fuglede-Putnam Theorems, norm ideal, orthogonality result for derivations, suites noyaux
Received by editor(s): June 26, 1996
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society