Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Centroaffine surfaces in $\mathbb{R}^{4}$
with planar $\nabla $-geodesics

Authors: Christine Scharlach and Luc Vrancken
Journal: Proc. Amer. Math. Soc. 126 (1998), 213-219
MSC (1991): Primary 53A15; Secondary 53B05, 53B25
MathSciNet review: 1452827
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For (positive) definite surfaces in $\mathbb{R}^{4}$ there is a canonical choice of a centroaffine normal plane bundle, which induces a centroaffine invariant Ricci-symmetric connection $\nabla $. We classify all surfaces in $\mathbb{R}^{4}$ with planar $\nabla $-geodesics. It turns out that the resulting class of surfaces is umbilical with projectively flat induced connection and flat normal plane bundle.

References [Enhancements On Off] (What's this?)

  • [N-S] K. Nomizu and T. Sasaki, Centroaffine immersions of codimension two and projective hypersurface theory, Nagoya Math. J. 132 (1993), 63-90. MR 94j:53013
  • [N-Vr] K. Nomizu and L. Vrancken, A new equiaffine theory for surfaces in $\mathbb{R}^{4}$, Internat. J. Math. 4 (1993), 127-165. MR 94f:53014
  • [Sch1] Ch. Scharlach, Centroaffine differential geometry of surfaces in $\mathbb{R}^{4}$, Dissertation, Technische Universität Berlin, 1994.
  • [Sch2] Ch. Scharlach, Centroaffine first order invariants of surfaces in $\mathbb{R}^{4}$, Results Math. 27 (1995), 141-159. MR 96a:53016
  • [Sch3] Ch. Scharlach, Centroaffine differential geometry of (positive) definite oriented surfaces in $\mathbb{R}^{4}$, Preprint No. 451/1995, FB Mathematik, TU Berlin, submitted.
  • [Vr] L. Vrancken, Affine surfaces whose geodesics are planar curves, Proc. Amer. Math. Soc. 123 (1995), 3851-3854. MR 96b:53021

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 53A15, 53B05, 53B25

Retrieve articles in all journals with MSC (1991): 53A15, 53B05, 53B25

Additional Information

Christine Scharlach
Affiliation: Fachbereich Mathematik, MA 8-3, Technische Universität Berlin, Straße des 17. Juni 136, D-10623 Berlin, Germany

Luc Vrancken
Affiliation: Departemente Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, B-3001 Leuven, Belgium

Keywords: Centroaffine geometry, centroaffine surfaces in $\mathbb{R}^{4}$, centroaffine normal plane bundle, induced connection, planar geodesics
Received by editor(s): March 19, 1996
Additional Notes: The authors were supported in part by the DFG-project “Affine differential geometry" at the TU Berlin.
The first author was supported in part by the DFG-Forschungsstipendium Scha 698/1-1.
The last author is a Senior Research Assistant of the National Fund for Scientific Research (Belgium).
Communicated by: Christopher Croke
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society