PRIMES OF THE FORM $p = 1 + m^2 + n^2$ IN SHORT INTERVALS

J. WU

(Communicated by Dennis A. Hejhal)

Abstract. In this note, we prove that for every $\theta \geq 115/121$ and $x \geq x_0(\theta)$, the short interval $(x, x + x^\theta]$ contains at least one prime number of the form $p = 1 + m^2 + n^2$ with $(m, n) = 1$. This improves a similar result due to Huxley and Iwaniec, which requires $\theta \geq 99/100$.

§1. Introduction

The existence of prime numbers in short intervals is an important subject in analytic number theory. Huxley and Iwaniec [3] asked the following question: seek positive numbers θ, as small as possible, such that

(1.1) the short interval $(x, x + x^\theta]$ contains at least one prime number of the form $p = 1 + m^2 + n^2$ with $(m, n) = 1$ for $x \geq x_0(\theta)$.

Naturally this problem can be attacked by applying the half dimensional sieve to the sequence $A := \{p - 1 : x < p \leq x + x^\theta, p \equiv 3 \pmod{8}\}$, where, as in the sequel, the letter p, with or without subscript, denotes a prime number. In order to control error terms in formulas of sieves, a Bombieri–Vinogradov type mean-value theorem for short intervals is needed. Huxley and Iwaniec [3] have obtained a satisfactory generalization of Bombieri–Vinogradov’s theorem in the case of short intervals, using a zero-density theorem for Dirichlet L-functions. As an application, they have shown that (1.1) is true with $\theta = 99/100$.

The aim of this note is to improve Huxley and Iwaniec’s exponent. More precisely we shall prove the following result.

Theorem. For every $\theta \geq 115/121$ and $x \geq x_0(\theta)$, we have

(1.2) $\sum_{x < p \leq x + x^\theta} b^*(p - 1) \gg x^\theta/(\log x)^{3/2}$,

where

$$b^*(a) := \begin{cases} 1 & \text{if } a = m^2 + n^2 \text{ with } (m, n) = 1, \\ 0 & \text{otherwise.} \end{cases}$$
For comparison, we have $\frac{115}{127} \approx 0.9504$ and $\frac{99}{100} = 0.99$.

We begin in the same way as Huxley and Iwaniec. By (3.2) of [3], we have

\begin{equation}
\sum_{x < p \leq x + x^\theta} b^*(p - 1) = S(A; P_3, x + x^\theta),
\end{equation}

where $S(A; P_3, z) := \# \left\{ a \in A : (a, \prod_{p < z, p \in P_3} p) = 1 \right\}$ and $P_3 := \{ p : p \equiv 3 \pmod{4} \}$. Let $\alpha = \alpha(\theta) \in [2, 3)$ be a parameter to be chosen later. For $z = x^{1/\alpha}$, we write

\begin{equation}
S(A; P_3, x + x^\theta) = S(A; P_3, z) - T,
\end{equation}

where $T := S(A; P_3, z) - S(A; P_3, x + x^\theta)$. A lower bound for $S(A; P_3, z)$ on the right-hand side of (1.4) will be obtained by the half dimensional sieve (as in [3]) in Section 3. We shall give a better upper bound for T than that of Huxley and Iwaniec. This improvement comes from our generalized Bombieri–Vinogradov type mean-value theorem for short intervals that we state in Section 2. One observes that each element $a \in A$ is divisible by an even number of primes from P_3 and $2 \parallel a$. Hence, for $z = x^{1/\alpha}$ with $2 \leq \alpha < 3$, we have obviously

\begin{equation}
T \leq \sum_{\substack{x < p \leq x + x^\theta \atop p = 1 + 2np_1p_2}} 1,
\end{equation}

where $p_1 \in P_3, p_2 \in P_3, p_1 \geq p_2 \geq x^{1/\alpha}$ and n is an integer divisible only by primes of the form $p \equiv 1 \pmod{4}$. We define

\[\mathcal{L} := \{ l = 2np_2 : n \leq x^{1-2/\alpha}, p \mid n \Rightarrow p \equiv 1 \pmod{4}; \quad x^{1/\alpha} < p_2 \leq (x/n)^{1/2}, p_2 \in P_3 \}. \]

For every $l \in \mathcal{L}$, we put

\[\mathcal{M}(l) := \{ m = lp_1 + 1 : x/l < p_1 \leq (x + x^\theta)/l, (l/2)p_1 \equiv 1 \pmod{4} \}. \]

It is clear that the sum on the right-hand side of (1.5) does not exceed the number of primes in the set $\bigcup_{l \in \mathcal{L}} \mathcal{M}(l)$; thus

\begin{equation}
T \leq \sum_{l \in \mathcal{L}} \left\{ S\left(\mathcal{M}(l) ; P(l), (x/l)^{\theta_1} \right) + O\left((x/l)^{\theta_1} \right) \right\},
\end{equation}

where $P(l) := \{ p : (p, l) = 1 \}$ and $\theta_1 := (2\theta - 1)/4$. We shall apply an upper bound formula of the linear sieve to treat $S\left(\mathcal{M}(l) ; P(l), (x/l)^{\theta_1} \right)$ in Section 4.

It seems interesting to compare the theorem with the following results: for x sufficiently large, $(x, x + x^{0.973})$ contains at least one prime of the form $p = -2 + P_2$ where P_2 denotes an integer having at most two prime factors [8]; for every $\varepsilon > 0$ and $x \geq x_0(\varepsilon)$, there exists at least one prime of the form $p = -2 + a$ in $(x, x + x^{3/4+\varepsilon}]$ where a is a B–free integer [7].

\section*{§2. Two Preliminary Lemmas}

We first recall some standard notations (cf. [2]). Let \mathcal{F} be a finite sequence of integers and let \mathcal{P} be a set of prime numbers. For $z \geq 2$, the sifting function is defined as follows:

\[S(\mathcal{F}; \mathcal{P}, z) := \# \left\{ a \in \mathcal{F} : (a, P(z)) = 1 \right\}, \]
Lemma 1. If there exist positive constants A_k ($k = 1, 2, 3$) such that

\[0 \leq \frac{w(p)}{p} < 1 - \frac{1}{A_1}, \]

\[-A_2 \leq \sum_{z_1 \leq p < z_2} \frac{w(p) \log p}{p} - \log \frac{z_2}{z_1} \leq A_3 \quad (z_2 \geq z_1 \geq 2), \]

we then have, for $2 \leq z \leq Q$, that

\[S(F; \mathcal{P}, z) \leq XV(z) \left\{ F \left(\frac{\log Q}{\log z} \right) + O \left(\frac{A_2}{(\log Q)^{1/14}} \right) \right\} + \sum_{d \leq Q, d \mid P(z)} 3^{\omega(d)} |r(F, d)|, \]

where $F(t) = 2e^t/t$ ($0 < t < 2$).

The following lemma is a direct consequence of Theorem 2 of [6].

Lemma 2. Let $g(l)$ be an arithmetic function satisfying $g(l) \ll 1$ and let

\[H(x', h, q, a, l) := \sum_{x' < p \leq x'+h} -\frac{1}{\varphi(q)} \int_{x'/l}^{(x'+h)/l} \frac{dt}{\log t}. \]

Then for any $A > 0$, there exists a positive constant $B = B(A)$ such that

\[\sum_{q \leq Q} \max_{(a, q) = 1} \max_{h \leq x} \max_{x'/l \leq x' \leq x} \left| \sum_{l \leq L} g(l) H(x', h, q, a, l) \right| \ll \frac{x^\theta}{(\log x)^A}, \quad (1.1) \]

\[\sum_{q \leq Q} \mu(q)^2 \varphi(q)^3 \max_{(a, q) = 1} \max_{h \leq x} \max_{x'/l \leq x' \leq x} \left| \sum_{l \leq L} g(l) H(x', h, q, a, l) \right| \ll \frac{x^\theta}{(\log x)^A}, \quad (2.2) \]

for $x \geq 10$, $\frac{3}{5} + \varepsilon \leq \theta \leq 1$, $Q = x^{\theta-1/2}/(\log x)^2$ and $L = x^{(5\theta-3)/2-\varepsilon}$.

where $P(z) := \prod_{p < z, p \in \mathcal{P}} p$. If d is a squarefree integer whose prime factors belong to \mathcal{P}, we let $\mathcal{F}_d := \{ n \in \mathcal{F} : d \mid n \}$ and use $|\mathcal{F}_d|$ to denote the number of elements of \mathcal{F}_d. We write an approximate formula

\[|\mathcal{F}_d| = \frac{w(d)}{d} X + r(F, d), \]

where $X > 1$ is independent of d, and $w(d)$ is a multiplicative function. We define

\[V(z) := \prod_{p < z, p \in \mathcal{P}} (1 - w(p)/p). \]

As usual, $\mu(n)$ is M"obius’ function, $\varphi(n)$ Euler’s function and $\omega(n)$ the number of distinct prime factors of n. Finally we write ε for an arbitrarily small positive number and γ for Euler’s constant.

The first lemma is an upper bound formula of the linear sieve ([2], Theorem 8.3).
\section*{§3. Lower bound for $S(A; P_3, x^{1/\alpha})$}

The following proposition offers the required lower bound for $S(A; P_3, x^{1/\alpha})$.

Proposition 1. Assume that $\frac{1}{2} \leq \theta \leq 1$ and $2/(2\theta - 1) \leq \alpha \leq 6/(2\theta - 1)$. We then have

\begin{equation}
S(A; P_3, x^{1/\alpha}) \geq \{W_1(\theta, \alpha) + o(1)\} x^{\theta}/(\log x)^{3/2},
\end{equation}

where

\[W_1(\theta, \alpha) := \frac{AC_3}{\sqrt{4\theta - 2}} \int_1^{\alpha(\theta - 1/2)} \frac{dt}{\sqrt{t(t-1)}} \]

and \[A := (1/2\sqrt{2}) \Pi_{p\equiv3(\text{mod}4)} (1 - p^{-2})^{1/2}, \]

\[C_3 := \Pi_{p\equiv3(\text{mod}4)} (1 - (p - 1)^{-2}) \]

Proof. By (3.3) of [3] or Theorem 1 of [4], we have

\begin{equation}
S(A; P_3, x^{1/\alpha}) \geq \{1 + o(1)\} x^{\theta}V(x^{\theta}, Q) \sqrt{\frac{\pi x}{\alpha \log x}} \int_{1}^{\xi} \frac{dt}{\sqrt{t(t-1)}} = E(x, x^\theta, Q),
\end{equation}

where

\[\xi = \alpha \frac{\log Q}{\log x} \in [1, 3], \quad V(x^{1/\alpha}) = \prod_{p < x^{1/\alpha}} \left(1 - \frac{1}{p - 1}\right), \]

\[E(x, x^\theta, Q) = \sum_{q \leq Q} \max_{(a, q) = 1} \max_{1 \leq x^{\theta} < x/2 \leq x} \left| \sum_{x^{1/\alpha} < p \leq x^{1/\alpha} + h} 1 - \frac{1}{\varphi(q)} \int_{x^{1/\alpha}}^{x^{1/\alpha} + h} \frac{dt}{\log t} \right|. \]

Let χ be the non-principal character modulo 4 and let $L(\chi, s)$ be the Dirichlet L-function associated with χ. Using the relation \[L(\chi, 1; y) := \prod_{p < y} (1 - \chi(p)/p)^{-1} \rightarrow L(\chi, 1) = \frac{\pi}{2} (y \rightarrow \infty) \] and Mertens’ formula, we deduce that

\begin{equation}
V(x^{1/\alpha}) = \sqrt{2L(\chi, 1; x^{1/\alpha})} \prod_{p < x^{1/\alpha}} \left(1 - \frac{1}{p - 1}\right)^{1/2}
\end{equation}

\[\times \prod_{p < x^{1/\alpha}} (1 - p^{-2})^{1/2} \]

\[= \{1 + o(1)\} 2AC_3(\alpha \pi e^{-\gamma}/\log x)^{1/2} \quad (x \rightarrow \infty). \]

Taking $Q = x^{\theta - 1/2}/(\log x)^B$ and $g(1) = 1, g(l) = 0$ ($l \geq 2$) in (2.1) of Lemma 2, we obtain

\begin{equation}
E(x, x^\theta, Q) \ll x^\theta/(\log x)^2.
\end{equation}

Now the required inequality (3.1) follows from (3.2)–(3.4).

\section*{§4. Upper bound for T}

The purpose of this section is to prove Proposition 2 below, which gives a better upper bound for T than that of [3]. To prepare for its proof, we first establish two auxiliary results.
Lemma 3. Let \(u(n) \) be the characteristic function of integers whose prime factors are of the form \(4m + 1 \) and let \(f(n) := \prod_{p \mid n, p > 2} (p - 1)/(p - 2) \). We then have

\[
(4.1) \quad \sum_{n \leq x} u(n) f(n) = (A/C_1) x/(\log x)^{1/2} + O(x/(\log x)^{3/2}),
\]

where \(C_1 := \prod_{p \equiv 1 (\mod 4)} (1 - (p - 1)^{-2}) \) and \(A \) is defined as in Proposition 1.

Proof. Let \(\chi, L(s, \chi) \) be defined as above. It is clear that \(u(n) f(n) \) is multiplicative and

\[
(4.2) \quad u(p^n) f(p^n) = \begin{cases} (p - 1)/(p - 2) & \text{if } p \equiv 1 (\mod 4), \\ 0 & \text{otherwise} \end{cases}
\]

A simple calculation shows that for \(\Re s > 1 \),

\[
\sum_{n=1}^{\infty} u(n) f(n) n^{-s} = \prod_{p \equiv 1 (\mod 4)} (1 - p^{-s})^{-1} (1 + (p - 2)^{-1} p^{-s}) = \zeta(s)^{1/2} G(s),
\]

where \(\zeta(s) \) is Riemann’s zeta function and

\[
G(s) := (L(s, \chi)(1 - 2^{-s}) \prod_{p \equiv 3 (\mod 4)} (1 - p^{-2s}))^{1/2} \prod_{p \equiv 1 (\mod 4)} (1 + (p - 2)^{-1} p^{-s}).
\]

Using the well known estimation (see [1], Theorem 8.1)

\[
L(s, \chi) \ll (\log (3 + |3m s|) \quad \text{for } \Re s \geq 1 - 1/\log (3 + |3m s|),
\]

we see that \(\sum_{n=1}^{\infty} u(n) f(n) n^{-s} \) is of type \(T(1/2, 1/2; c_0, \delta, M) \), where \(c_0, \delta, M \) are suitable positive constants (see page 185 of [5] for the definition of \(T(1/2, 1/2; c_0, \delta, M) \)). Thus Theorem II.5.3 of [5] is applicable. Now our required result follows immediately from this theorem with \(N = 0 \).

Lemma 4. Let \(\mathcal{L}, f(n), A, C_1 \) be defined as above. Assume that \(2 \leq \alpha < 3 \). We have

\[
(4.2) \quad \sum_{l \in \mathcal{L}} \frac{f(l)}{l \log^2 (x/l)} = 1 + o(1) \frac{A \alpha}{(\log x)^{3/2}} \int_2^x \frac{t - 2 + (t - 1) \log(t - 1)}{t^2(t - 1)(1 - t/\alpha)^{1/2}} \, dt.
\]

Proof. Let \(Y \) be the sum on the left-hand side of (4.2) and let \(u(n) \) be the function defined as in Lemma 3. We have

\[
Y = \frac{1 + o(1)}{2} \sum_{n \leq x^{1 - 2/\alpha}} \frac{u(n) f(n)}{n} \sum_{x^{1/\alpha} \leq p_2 \leq (x/\Pi)^{1/3}} \frac{1}{p_2 \log^2 (x/np_2)}.
\]

As usual we put \(\pi(t; 4, 3) := \sum_{p \leq t, p \equiv 3 (\mod 4)} 1 \). By the Siegel–Walfisz theorem

\[
\pi(t; 4, 3) = \frac{1}{2} \int_2^t \frac{dv}{\log v} + O(t e^{-\sqrt{\log t}})
\]
and by partial integration, we easily deduce that

\[Y = \frac{1 + o(1)}{2} \sum_{n \leq x^{1-2/\alpha}} \frac{u(n)f(n)}{n} \int_{x^{1/\alpha}}^{(x/n)^{1/2}} \frac{d\pi(t; 4, 3)}{t\log^2(x/nt)} = \frac{1 + o(1)}{4} \sum_{n \leq x^{1-2/\alpha}} \frac{u(n)f(n)}{n} \int_{x^{1/\alpha}}^{(x/n)^{1/2}} \frac{dt}{\log^2(x/nt) t \log t} = \frac{1 + o(1)}{4 \log^2 x} \sum_{n \leq x^{1-2/\alpha}} \frac{u(n)f(n)}{nh(n)^2} \left(\frac{\alpha h(n) - 2}{\alpha h(n) - 1} + \log \left(\frac{\alpha h(n)}{\alpha h(n) - 1} \right) \right) \]

with \(h(n) := 1 - \log n/\log x \). We define

\[U(t) := \sum_{n \leq t} u(n)f(n), \quad K(t) := \frac{1}{\log t} \left(\frac{\alpha h(t) - 2}{\alpha h(t) - 1} + \log \left(\frac{\alpha h(t)}{\alpha h(t) - 1} \right) \right). \]

It is not difficult to show that we have, uniformly for \(x \geq 10 \) and \(1 \leq t \leq x^{1-2/\alpha} \),

\[K'(t) = -\frac{1}{t^2 \log t} \left(\frac{\alpha h(t) - 2}{\alpha h(t) - 1} + \log \left(\frac{\alpha h(t)}{\alpha h(t) - 1} \right) \right) + O \left(\frac{1}{t^{2 \log x}} \right). \]

Let \(Z \) be the last sum on the right-hand side of (4.3). Noticing that \(U(1-) = K(x^{1-2/\alpha}) = 0 \), using (4.1) and (4.4), we deduce, by partial integration, that

\[Z = \int_{1-}^{x^{1-2/\alpha}} K(v) dU(v) = -\int_{1-}^{x^{1-2/\alpha}} U(v)K'(v) dv = \frac{A}{C_1} \int_{1}^{2//1} \left(\frac{\alpha h(v) - 2}{\alpha h(v) - 1} + \log \left(\frac{\alpha h(v)}{\alpha h(v) - 1} \right) \right) \frac{dv}{\alpha h(v)^2 (\log v)^{1/2}} + O(1). \]

By the change of variables \(t = \alpha h(v) \), we obtain

\[Z = \sqrt{\log x} \frac{A\alpha}{C_1} \int_{1}^{\alpha} \frac{t - 2 + (t - 1) \log(t - 1)}{t^2(t - 1)(1 - t/\alpha)^{1/2}} dt + O(1). \]

Inserting this in (4.3) yields (4.2). This completes the proof. \(\square \)

An upper bound for \(T \) is obtained in the following proposition.

Proposition 2. Assume that \(\frac{4}{5} < \theta < 1 \) and \(2 \leq \alpha < \min \{ 3, 2/(5 - 5\theta) \} \). We then have

\[T \leq \{ W_2(\theta, \alpha) + o(1) \} \frac{x^\theta}{(\log x)^{3/2}}, \]

where

\[W_2(\theta, \alpha) := \frac{AC_3\alpha}{2\theta - 1} \int_{1/2}^{\alpha} \frac{t - 2 + (t - 1) \log(t - 1)}{t^2(t - 1)(1 - t/\alpha)^{1/2}} dt, \]

and \(A, C_3 \) are defined as in Proposition 1.

Proof. For every \(l \in \mathcal{L} \), it is natural to choose, in Lemma 1,

\[\mathcal{F} = \mathcal{M}(l), \quad \mathcal{P} = \mathcal{P}(l), \quad X = \frac{1}{2} \int_{x/l}^{(x+x^\theta)/l} \frac{dt}{\log t}, \]

\[w(p) = \begin{cases} p/(p-1) & \text{if } p \in \mathcal{P}(l), \\ 0 & \text{otherwise}. \end{cases} \]
Let d be a squarefree integer whose prime factors belong to $\mathcal{P}(l)$. By the Chinese Remainder Theorem, the system of congruences $(l/2)p_1 \equiv 1 \pmod{4}, lp_1 \equiv -1 \pmod{d}$ has exactly one solution $a^*(\mod 4d)$. Thus we have

$$|\mathcal{M}(l)_d| = \sum_{x/l < p_1 \leq (x+x^*)/l, p_1 \equiv a^* \pmod{4d}} 1,$$

$$r(\mathcal{M}(l), d) = H(x/l, x^\theta/l, 4d, a^*, 1).$$

According to Lemma 1, one has

$$S(\mathcal{M}(l); \mathcal{P}(l), (x/l)^{\theta_1}) \leq XV((x/l)^{\theta_1}) \left\{ F\left(\frac{\log Q}{\theta_1 \log(x/l)}\right) + o(1) \right\} + R(x, x^\theta, Q, l),$$

where $\theta_1 = (2\theta - 1)/4$ and

$$R(x, x^\theta, Q, l) := \sum_{d < Q, d \mid [x/(x/l)^{\theta_1}]^2} 3^{\omega(d)}|r(\mathcal{M}(l), d)|.$$

Using Mertens’ formula, we have

$$V((x/l)^{\theta_1}) = \prod_{p < (x/l)^{\theta_1}, (p, l) = 1} \left(1 - \frac{1}{p - 1}\right) = \{1 + o(1)\} \frac{2C_1C_3e^{-\gamma}f(l)}{x^\theta \log(x/l)},$$

where $f(l), C_1$ are defined as in Lemma 3. Since $\frac{4}{7} < \theta < 1$ and $2 \leq \alpha < 2/(5-5\theta)$, we have $\max_{x \leq l} = x^{1-1/\alpha} \leq x^{(5\theta-3)/2-\varepsilon}$ and $x^\theta/l \geq (x/l)^{3/5+\varepsilon/5}$. Taking $Q = (x/l)^{\theta-1/2}/\log^2(x/l)$ and $g(1) = 1, g(m) = 0 \ (m \geq 2)$, it follows from (2.2) of Lemma 2 that

$$R(x, x^\theta, Q, l) \ll x^\theta/l \log^3(x/l).$$

Combining (4.5)–(4.7), one has the following estimate

$$S(\mathcal{M}(l); \mathcal{P}(l), (x/l)^{\theta_1}) \leq \{1 + o(1)\} \frac{C_1C_3f(l)x^\theta}{\theta_1 \log^2(x/l)}.$$
In order to facilitate the calculation on a computer, we eliminate, by integration by parts, the singularity of two integrands on the right-hand side of (5.2). We have

\[
W(\theta, \alpha) = \sqrt{4\theta - 2} - 4/\alpha + \sqrt{\theta - 1/2} \int_1^{\theta - 1/2} t^{-3/2} dt \\
- 2\alpha^2 \int_2^{\theta - 1/2} \frac{-t^2 + 6t - 4 - 2(t - 1)^2 \log(t - 1)}{(t - 1)^3 t^3} \log(t - 1) \cdot (1 - t/\alpha)^{1/2} dt.
\]

We choose \(\theta = \frac{115}{121} \) and \(\alpha = 2.349 \), which satisfy (5.1). A numerical computation gives us

\[
W\left(\frac{115}{121}, 2.349\right) = 0.314325 \cdots + 0.671128 \cdots \times 0.008853 \cdots - 2 \times 2.349^2 \times 0.028982 \cdots \\
\geq 4 \times 10^{-4}.
\]

This completes the proof.

References

Laboratoire de Mathématiques, Institut Elie Cartan – CNRS UMR 9973, Université Henri Poincaré (Nancy 1), 54506 Vandoeuvre-lès-Nancy, France

E-mail address: wujie@iecn.u-nancy.fr