Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the asymptoticity aspect
of Hyers-Ulam stability of mappings


Authors: D. H. Hyers, G. Isac and Th. M. Rassias
Journal: Proc. Amer. Math. Soc. 126 (1998), 425-430
MSC (1991): Primary 39B72, 47H15
DOI: https://doi.org/10.1090/S0002-9939-98-04060-X
MathSciNet review: 1415589
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The object of the present paper is to prove an asymptotic analogue of Th.M. Rassias' theorem obtained in 1978 for the Hyers-Ulam stability of mappings.


References [Enhancements On Off] (What's this?)

  • 1. R. Alexander, C. E. Blair and L. A. Rubel, Approximate version of Cauchy's functional equation, Illinois J. Math. 39 (1995), 278-287. MR 96b:39018
  • 2. H. Amann, Fixed points of asymptotically linear maps in ordered Banach spaces, J. Funct. Anal. 14 (1973), 162-171. MR 50:3019
  • 3. H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review 18 (1976), 620-709. MR 54:3519
  • 4. N. P. Câc and J. A. Gatica, Fixed point theorems for mappings in ordered Banach spaces, J. Math. Anal. Appl. 71 (1979), 547-557. MR 80j:47071
  • 5. J. Chmieli\'{n}ski, On the stability of the generalized orthogonality equation, In: Stability of Mappings of Hyers-Ulam Type (eds. Th. M. Rassias & J. Tabor), Hadronic Press, Palm Harbour, Florida, 1994, pp. 31-57. MR 95j:39046
  • 6. P. D. T. A. Elliott, Cauchy's functional equation in the mean, Advances in Math. 51 (1984), 253-257. MR 86d:39009
  • 7. R. Ger, On functional inequalities stemming from stability questions, In: General Inequalities 6, (ed. W. Walter), Internat. Ser. Numer. Math., Vol. 103, Birkhäuser Verlag, Basel, 1992, pp. 227-240. MR 94b:39042
  • 8. R. Ger and J. Sikorska, Stability of the orthogonal additivity, Bull. Polish Acad. Sci. Math. 43 (1995), 143-151. CMP 97:03
  • 9. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. MR 2:315a
  • 10. D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequat. Math. 44 (1992), 125-153. MR 93i:39007
  • 11. G. Isac. Opérateurs asymptotiquement linéaires sur des espaces localement convexes, Colloq. Math. 46 (1982), 67-72. MR 84h:58014
  • 12. G. Isac and Th. M. Rassias, On the Hyers-Ulam stability of $\psi$-additive mappings, J. Approx. Theory 72 (1993), 131-137. MR 94b:39043
  • 13. G. Isac and Th. M. Rassias, Stability of $\psi$-additive mappings: Applications to nonlinear analysis, Intern. J. Math. & Math. Sciences 19 (1996), 219-228. MR 96m:47114
  • 14. M. A. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, (1964). MR 31:6107
  • 15. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. MR 80d:47094
  • 16. Th. M. Rassias and P. \v{S}emrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338. MR 94d:39011
  • 17. F. Skof, Sull' approssimazione delle applicazioni localmente $\delta$-additive, Atti. Accad. Sc. Torino 117 (1983), 377-389. MR 89a:39015
  • 18. F. Skof, On the stability of functional equations on a restricted domain and a related topic, In: Stability of Mappings of Hyers-Ulam type (eds. Th. M. Rassias and J. Tabor), Hadronic Press, Palm Harbor, Florida, 1994, pp. 141-151. MR 96a:39035

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 39B72, 47H15

Retrieve articles in all journals with MSC (1991): 39B72, 47H15


Additional Information

D. H. Hyers
Affiliation: Department of Mathematics, University of Southern California, Los Angeles, California 90089-1113

G. Isac
Affiliation: Department of Mathematics and Computer Science, Royal Military College of Canada, Kingston, Ontario, Canada K7K 5L0

Th. M. Rassias
Affiliation: Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece

DOI: https://doi.org/10.1090/S0002-9939-98-04060-X
Keywords: Hyers-Ulam stability, asymptotic conditions, asymptotically derivable, additive outside a ball
Received by editor(s): December 11, 1995
Received by editor(s) in revised form: May 21, 1996, and July 29, 1996
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society