Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A remark on Gelfand-Kirillov dimension


Authors: S. Paul Smith and James J. Zhang
Journal: Proc. Amer. Math. Soc. 126 (1998), 349-352
MSC (1991): Primary 16P90
DOI: https://doi.org/10.1090/S0002-9939-98-04074-X
MathSciNet review: 1415339
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $A$ be a finitely generated non-PI Ore domain and $Q$ the quotient division algebra of $A$. If $C$ is the center of $Q$, then $\operatorname{GKdim} C\leq \operatorname{GKdim} A-2$.


References [Enhancements On Off] (What's this?)

  • [Be] G. M. Bergman, A note on growth functions of algebras and semigroups, mimeographed notes, University of California, Berkeley, 1978.
  • [BK] W. Borho and H. Kraft, Über die Gelfand-Kirillov-Dimension,, Math. Annalen 220 (1976), 1-24. MR 54:367
  • [GK] I. M. Gelfand and A. A. Kirillov, Sur les corps liés aux algèbres enveloppantes des algèbres de Lie, Publ. Math. I.H.E.S. 31 (1966), 5-19. MR 34:7731
  • [KL] G. Krause and T. H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, Research Notes in Mathematics, Pitman Adv. Publ. Program, vol 116, 1985. MR 86g:16001
  • [Lo] M. Lorenz, On the transcendence degree of group algebras of nilpotent groups, Glasgow Math. J. 25 (1984), 167-174. MR 86c:16005
  • [SSW] L. W. Small, J. T. Stafford and R. B. Warfield, Affine algebras of Gelfand-Kirillov dimension one are PI, Math. Proc. Camb. Phil. Soc. 97 (1985), 407-414. MR 86g:16025
  • [Sm] S. P. Smith, Central localization and Gelfand-Kirillov dimension, Israel J. Math. 46 (1983), 33-39. MR 85k:16048
  • [Zh] J. J. Zhang, On Gelfand-Kirillov transcendence degree,, Trans. Amer. Math. Soc. 348 (1996), 2867-2899. MR 97a:16016

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 16P90

Retrieve articles in all journals with MSC (1991): 16P90


Additional Information

S. Paul Smith
Affiliation: Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195
Email: smith@math.washington.edu

James J. Zhang
Affiliation: Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195
Email: zhang@math.washington.edu

DOI: https://doi.org/10.1090/S0002-9939-98-04074-X
Keywords: Gelfand-Kirillov dimension
Received by editor(s): July 12, 1996
Received by editor(s) in revised form: August 20, 1996
Additional Notes: This research was supported in part by the NSF
Communicated by: Lance W. Small
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society