Stability of weakly almost conformal mappings

Authors:
Baisheng Yan and Zhengfang Zhou

Journal:
Proc. Amer. Math. Soc. **126** (1998), 481-489

MSC (1991):
Primary 49J10, 35J50, 30C62

DOI:
https://doi.org/10.1090/S0002-9939-98-04079-9

MathSciNet review:
1415344

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a stability of weakly almost conformal mappings in for not too far below the dimension by studying the -quasiconvex hull of the set of conformal matrices. The study is based on coercivity estimates from the nonlinear Hodge decompositions and reverse Hölder inequalities from the Ekeland variational principle.

**1.**Acerbi, E. and Fusco, N.,*Semicontinuity problems in the calculus of variations,*Arch. Rational Mech. Anal.,**86**(1984), 125-145. MR**85m:49021****2.**Ball, J. M.,*Convexity conditions and existence theorems in nonlinear elasticity,*Arch. Rational Mech. Anal.,**63**(1977), 337-403. MR**57:14788****3.**Ball, J. M. and Murat, F.,*-Quasiconvexity and variational problems for multiple integrals,*J. Funct. Anal.,**58**(1984), 225-253. MR**87g:49011a****4.**Dacorogna, B., ``Direct Methods in the Calculus of Variations," Springer-Verlag, Berlin, Heidelberg, New York, 1989. MR**90e:49001****5.**Ekeland, I.,*On the variational principle,*J. Math. Anal. Appl.,**47**(1974), 324-353. MR**49:11344****6.**De Figueiredo, D. G., ``The Ekeland Variational Principle with Applications and Detours," Tata Institute Lecture, Springer-Verlag, Berlin, Heidelberg, New York, 1989.**7.**Gehring, F. W.,*The -integrability of the partial derivatives of a quasiconformal mapping,*Acta Math.,**130**(1973), 265-277. MR**53:5861****8.**Giaquinta, M., ``Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems," Princeton University Press, Princeton, 1983. MR**86b:49003****9.**Giaquinta, M., ``Introduction to Regularity Theory for Nonlinear Elliptic Systems," Lectures in Mathematics, ETH Zürich, Birkhäuser, Basel, Berlin, 1993. MR**94g:49002****10.**Greco, L. and Iwaniec, T.,*New inequalities for the Jacobian,*Ann. Inst. H. Poincaré, Analyse non linéaire,**11(1)**(1994), 17-35. MR**95b:42020****11.**Iwaniec, T.,*p-Harmonic tensors and quasiregular mappings,*Ann. Math.,**136**(1992), 589-624. MR**94d:30034****12.**Iwaniec, T. and Martin, G.,*Quasiregular mappings in even dimensions,*Acta Math.,**170**(1993), 29-81. MR**94m:30046****13.**Iwaniec, T. and Sbordone, C.,*Weak minima of variational integrals,*J. Reine Angew. Math.,**454**(1994), 143-161. MR**95d:49035****14.**Morrey, C. B. Jr., ``Multiple Integrals in the Calculus of Variations," Springer-Verlag, Berlin, Heidelberg, New York, 1966. MR**34:2380****15.**Müller, S., \v{S}verák, V. and Yan, B.,*Sharp stability results for almost conformal maps in even dimensions,*submitted to Journ. Geom. Analysis.**16.**Reshetnyak, Yu. G., ``Space Mappings with Bounded Distortion," Transl. Math. Mono., A.M.S., Vol.**73**, 1989. MR**90d:30067****17.**\v{S}verák, V.,*Lower semicontinuity for variational integral functionals and compensated compactness,*Proceedings of I.C.M., Zürich, 1994.**18.**Yan, B.,*Remarks about -stability of the conformal set in higher dimensions,*Ann. Inst. H. Poincaré, Analyse non linéaire,**13 (6)**, 1996.**19.**Yan, B.,*On rank-one convex and polyconvex conformal energy functions with slow growth,*Proc. Roy. Soc. Edinb., Ser. A. (to appear)**20.**Yan, B.,*On -quasiconvex hull of sets of matrices and weak convergence in Sobolev spaces,*preprint, 1995.**21.**Zhang, K.,*A construction of quasiconvex functions with linear growth at infinity,*Ann. Scuola Norm. Sup. Pisa,**19(3)**(1992), 313-326. MR**94d:49018**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
49J10,
35J50,
30C62

Retrieve articles in all journals with MSC (1991): 49J10, 35J50, 30C62

Additional Information

**Baisheng Yan**

Affiliation:
Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

Email:
yan@math.msu.edu

**Zhengfang Zhou**

Affiliation:
Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

Email:
zfzhou@math.msu.edu

DOI:
https://doi.org/10.1090/S0002-9939-98-04079-9

Received by editor(s):
February 26, 1996

Received by editor(s) in revised form:
August 12, 1996

Communicated by:
Albert Baernstein II

Article copyright:
© Copyright 1998
American Mathematical Society