Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Uniqueness of positive solutions
for Sturm-Liouville boundary value problems


Author: Fu-Hsiang Wong
Journal: Proc. Amer. Math. Soc. 126 (1998), 365-374
MSC (1991): Primary 34B15; Secondary 35J25, 35J65, 47H15
DOI: https://doi.org/10.1090/S0002-9939-98-04264-6
MathSciNet review: 1443860
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Sufficient conditions for the uniqueness of positive solutions of singular Sturm-Liouville boundary value problems

\begin{equation*}\begin{cases} (\mathrm E)\ (|u'|^{m-2}u')'+f(t,u,u')=0,\quad\text{in}\ (\theta _1,\theta _2),m\ge 2,\\ (\mathrm{BC})\begin{cases} \alpha _1u(\theta _1)-\beta _1u'(\theta _1)=0,\\ \alpha _2u(\theta _2)+\beta _2u'(\theta _2)=0, \end{cases} \end{cases} \tag{BVP} \end{equation*}

where $\alpha _i,\beta _i\ge 0$ and $\alpha _i^2+\beta _i^2\not=0$ $(i=1,2)$, are established.


References [Enhancements On Off] (What's this?)

  • 1. R. P. Agarwal and V. Lakshmikantham, Uniqueness and nonuniqueness criteria for ordinary differential equations, World Scientific, Singapore, 1993. MR 96e:34002
  • 2. L. E. Bobisud, Steady state turbulent flow with reaction, Rocky Mount. J. Math. 21 (1991), 993-1007. MR 93a:34026
  • 3. H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Analysis T. M. & A. 19 (1986), 55-64. MR 87c:35057
  • 4. R. Dalmasso, Uniqueness of positive and nonnegative solutions of nonlinear equations, Funkcial. Ekvac 37 (1994), 461-482. MR 97c:34037
  • 5. -, Uniqueness of positive solutions of nonlinear second-order equations, Proc. Amer. Math. Soc. 123 (1995), 3417-3424. MR 96a:34035
  • 6. D. De. Figueiredo, P. L. Lions and R. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures. App. 61 (1982), 41-63. MR 83h:35039
  • 7. J. A. Gatica, V. Oliker and P. Waltman, Singular nonlinear boundary value problems for second-order ordinary differential equations, 79 (1989), 62-78. MR 90f:34030
  • 8. B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243. MR 80h:35043
  • 9. A. Granas, R. B. Guenther and J. W. Lee, Nonlinear boundary value problems for ordinary differential equations, Dissertationes (Rozprawy Mat) 244 (1985). MR 87a:34025
  • 10. M. Guedda and L. Veron, Bifurcation phenomena associated to the p-Laplace operator, Trans. Amer. Math. Soc. 310 (1988), 419-431. MR 89j:35024
  • 11. P. Hartman, Ordinary differential equations, Birkhauser, Boston, 1982. MR 83e:34002
  • 12. H. G. Kaper, M. Knapp and M. K. Kwong, Existence theorems for second order boundary value problems, Differential Integral Equations 4 (1991), 543-554. MR 92m:34059
  • 13. M. Krasnoselskii, Positive solutions of operator equations, Noordhoff, Groningen, 1964. MR 31:6107
  • 14. M. K. Kwong, On the Kolodner-Coffman method for the uniqueness problem of Emden-Fowler BVP, Z. Angew. Math. Phys. 41 (1990), 79-104. MR 91b:34037
  • 15. -, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbb R^n$, Arch. Rational. Mech. Anal. 105 (1989), 243-266. MR 90d:35015
  • 16. P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), 441-467. MR 84a:35093
  • 17. Y. Naito, Uniqueness of positive solutions of quasilinear differential equations, Differential Integral Equations 8 (1995), 1813-1822. MR 96g:34039
  • 18. W. M. Ni and R. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u+f(r,u)=0$, Comm. Pure. Appl. Math. 38 (1985), 69-108. MR 86d:35055
  • 19. M. del Pino, M. Elgueta and R. Manasevich, A homotopic deformation along $p$ of a Leray-Schauder degree result and existence for $(|u'|^{p-2}u')'+f(t,u)=0$, $u(0)=u(T)=0$, $p>1$, J. Differential Equations 80 (1989), 1-13. MR 91i:34018
  • 20. M. del Pino and R. Manasevich, Multiple solutions for the $p$-Laplacian under global nonresonance, Proc. Amer. Math. Soc. 112 (1991), 131-138. MR 91h:34026
  • 21. P. H. Rabinowitz, Minmax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math., Amer. Math. Soc., Providence, RI, 1986. MR 87j:58024
  • 22. Donal O'Regan, Theory of singular boundary value problems, World Scientific, Singapore, 1994. MR 95g:34003
  • 23. F. H. Wong and S. L. Yu, Uniqueness of positive solutions for singular nonlinear boundary value problems, Hiroshima Mathematical Journal 26 (1996), 233-243. MR 97d:35044
  • 24. F. H. Wong, Existence of positive solutions of singular boundary value problems, Nonlinear analysis T.M. & A. 21 (1993), 397-406. MR 94i:34056

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 34B15, 35J25, 35J65, 47H15

Retrieve articles in all journals with MSC (1991): 34B15, 35J25, 35J65, 47H15


Additional Information

Fu-Hsiang Wong
Affiliation: Department of Mathematics and Science, National Taipei Teacher’s College, 134, Ho-Ping e. Rd. Sec. 2, Taipei 10659, Taiwan, Republic of China
Email: wong@tea.ntptc.edu.tw

DOI: https://doi.org/10.1090/S0002-9939-98-04264-6
Keywords: Sturm-Liouville BVPs, positive solution, singular and uniqueness.
Received by editor(s): April 17, 1996
Communicated by: Hal L. Smith
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society