NOTE ON COMPACT SETS OF COMPACT OPERATORS ON A REFLEXIVE AND SEPARABLE BANACH SPACE

FERNANDO GALAZ-FONTES

(Communicated by Palle E. T. Jorgensen)

Abstract. We give a criterion for a subset of the space of compact linear operators from a separable and reflexive Banach space X into a Banach space Y to be compact.

1. Introduction

Let us consider (real or complex) Banach spaces X, Y. Then, with its usual norm, the space $\mathcal{K}(X, Y)$ of all compact linear operators $T : X \to Y$ is also a Banach space. K. Vala has discussed [3] the question of compactness for $K \subset \mathcal{K}(X, Y)$ in a general context. In this note, assuming X is reflexive and separable, we give another type of criterion for $K \subset \mathcal{K}(X, Y)$ to be compact.

Throughout this work, $\|\cdot\|$ will denote both the norm on the Banach space X and on the Banach space Y, $B_X = \{x \in X : \|x\| \leq 1\}$ and, for a sequence $\{x_n\} \subset X, x \in X, x_n \overset{w}{\to} x$ will indicate $\{x_n\}$ converges weakly to x. A linear operator $T : X \to Y$ is compact if, for each bounded sequence $\{x_n\} \subset X$, there is a converging subsequence $\{Tx_n(k)\} \subset Y$. As usual, if M is a metric space, then $A \subset M$ is said to be relatively compact if its closure is a compact set.

Our main tool will be the following version of Arzela-Ascoli’s criterion for compactness [1, p. 137].

Theorem. Suppose F is a Banach space and E is a compact metric space. In order that a subset H of the Banach space $C(E, F)$ of continuous functions of E into E be relatively compact, necessary and sufficient conditions are that H be equicontinuous and that for each $x \in E$, the set $H(x)$ of all $f(x)$ such that $f \in H$ be totally bounded in F.

2. The criterion

Motivated by Arzela-Ascoli’s criterion, we introduce the next definitions. Let $K \subset \mathcal{K}(X, Y)$. (a) We say K is pointwise relatively compact if, for each $x \in B_X$, the set $\{Tx : T \in K\} \subset X$ is relatively compact. (b) We say K is uniformly w-continuous, if given $\epsilon > 0$ and a sequence $\{x_n\} \subset X$ converging weakly to 0, there is an index N such that $\|Tx_n\| \leq \epsilon, N \leq n, T \in K$.

Received by the editors April 30, 1996 and, in revised form, August 26, 1996.

1991 Mathematics Subject Classification. Primary 47B07, 46B99.

This work was partially supported by CONACyT.
Theorem 1. Let X be a reflexive and separable Banach space. Then, $K \subset K(X,Y)$ is relatively compact if, and only if, K is pointwise relatively compact and uniformly w-continuous.

Proof. Since X is a reflexive and separable Banach space, it is well known that $B \equiv B_X$ is compact and metrizable (for some metric d) with respect to the weak topology. Given $T \in K(X,Y)$, let us define $\phi(T) = T_B$, where T_B is the restriction of T to B. Now T_B is in $C(B,Y)$, for if $x_n \overset{w}{\to} x$, then $Tx_n \to Tx$ since T is compact [2, p. 107]. Hence we have $\phi : K(X,Y) \to C(B,Y)$ and moreover ϕ is a linear isometry.

Suppose first that K is relatively compact. Then by Arzela-Ascoli’s theorem, it follows that K is pointwise relatively compact and equicontinuous. In particular, if $x_n \overset{w}{\to} 0$, then we can find some $N \in \mathbb{N}$ such that $\|Tx_n\| = \|Tx_n - T0\| < \epsilon$.

Now, assuming $K \subset K(X,Y)$ is pointwise relatively compact and uniformly w-continuous, we will establish that K is relatively compact. For this, by Arzela-Ascoli’s criterion, it is only left to show that the family B is equicontinuous. Assume this is not so. Thus, we can find an $\epsilon > 0$ and sequences $\{x_n\}, \{z_n\} \subset B$, $\{T_n\} \subset K(X,Y)$, satisfying

$$d(x_n, z_n) \leq \frac{1}{n}, \quad \epsilon \leq \|T_n x_n - T_n z_n\|.$$ \hspace{1cm} (1)

By the compactness of B, we will suppose both sequences $\{x_n\}$ and $\{z_n\}$ are convergent. It follows from above that they must converge to the same limit. Hence, $\{x_n - z_n\}$ converges weakly to 0. Now, since K is uniformly w-continuous, there is some index N such that $\|T(x_n - z_n)\| \leq \epsilon$, $N \leq n$. This contradicts (1). \hfill \Box

Acknowledgement

The author thanks the referee for his suggestions concerning the shortening of the proof for Theorem 1.

References

Centro de Investigación en Matemáticas, A. P. 402, Guanajuato, Gto., C.P. 36000, Mexico

E-mail address: galaz@fractal.cimat.mx