Uniqueness for an overdetermined boundary value problem for the pLaplacian
Authors:
Farid Bahrami and Henrik Shahgholian
Journal:
Proc. Amer. Math. Soc. 126 (1998), 745750
MSC (1991):
Primary 31B20, 35J05, 35R35
MathSciNet review:
1422844
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: For set , and let be a measure with compact support. Suppose, for , there are functions and (bounded) domains , both containing the support of with the property that in (weakly) and in the complement of . If in addition is convex, then and .
 [gu]
Björn
Gustafsson, On quadrature domains and an inverse problem in
potential theory, J. Analyse Math. 55 (1990),
172–216. MR 1094715
(92c:31013), http://dx.doi.org/10.1007/BF02789201
 [gs]
Björn
Gustafsson and Henrik
Shahgholian, Existence and geometric properties of solutions of a
free boundary problem in potential theory, J. Reine Angew. Math.
473 (1996), 137–179. MR 1390686
(97e:35205)
 [hkm]
Juha
Heinonen, Tero
Kilpeläinen, and Olli
Martio, Nonlinear potential theory of degenerate elliptic
equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford
University Press, New York, 1993. Oxford Science Publications. MR 1207810
(94e:31003)
 [i]
Victor
Isakov, Inverse source problems, Mathematical Surveys and
Monographs, vol. 34, American Mathematical Society, Providence, RI,
1990. MR
1071181 (92g:35230)
 [ks]
L. Karp, H. Shahgholian, Regularity of free boundaries, To appear.
 [l]
John
L. Lewis, Regularity of the derivatives of solutions to certain
degenerate elliptic equations, Indiana Univ. Math. J.
32 (1983), no. 6, 849–858. MR 721568
(84m:35048), http://dx.doi.org/10.1512/iumj.1983.32.32058
 [n]
P. S. Novikov, Sur le probléme inverse du potentiel, Dokl. Akad. Nauk SSSR, vol 18, 1938, 165168.
 [sa]
Makoto
Sakai, Quadrature domains, Lecture Notes in Mathematics,
vol. 934, SpringerVerlag, BerlinNew York, 1982. MR 663007
(84h:41047)
 [shah]
Henrik
Shahgholian, Convexity and uniqueness in an inverse
problem of potential theory, Proc. Amer. Math.
Soc. 116 (1992), no. 4, 1097–1100. MR 1137234
(93b:31008), http://dx.doi.org/10.1090/S00029939199211372342
 [sh]
Harold
S. Shapiro, The Schwarz function and its generalization to higher
dimensions, University of Arkansas Lecture Notes in the Mathematical
Sciences, 9, John Wiley & Sons, Inc., New York, 1992. A
WileyInterscience Publication. MR 1160990
(93g:30059)
 [t]
Peter
Tolksdorf, On the Dirichlet problem for quasilinear equations in
domains with conical boundary points, Comm. Partial Differential
Equations 8 (1983), no. 7, 773–817. MR 700735
(85g:35053), http://dx.doi.org/10.1080/03605308308820285
 [z]
Lawrence
Zalcman, Some inverse problems of potential theory, Integral
geometry (Brunswick, Maine, 1984) Contemp. Math., vol. 63, Amer.
Math. Soc., Providence, RI, 1987, pp. 337–350. MR 876329
(88e:31012), http://dx.doi.org/10.1090/conm/063/876329
 [gu]
 B. Gustafsson, On quadrature domains and an inverse problem in potential theory, J. Analyse Math. vol 55, 1990, 172216. MR 92c:31013
 [gs]
 B. Gustafsson, H. Shahgholian, Existence and geometric properties of solutions of a free boundary problem in potential theory, J. Reine Angew. Math. 473 (1996), 137179. MR 97e:35205
 [hkm]
 J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford University Press, Oxford, 1993. MR 94e:31003
 [i]
 V. Isakov, Inverse source problems, Math. Surveys Monographs, vol 34, Amer. Math. Soc., Providence, RI, 1990. MR 92g:35230
 [ks]
 L. Karp, H. Shahgholian, Regularity of free boundaries, To appear.
 [l]
 J.L. Lewis, Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana Univ. Math. J. 32, 1983, pp. 849858. MR 84m:35048
 [n]
 P. S. Novikov, Sur le probléme inverse du potentiel, Dokl. Akad. Nauk SSSR, vol 18, 1938, 165168.
 [sa]
 M. Sakai, Quadrature domains, Lecture Notes in Math., vol. 934, SpringerVerlag, BerlinHeidelberg, 1982. MR 84h:41047
 [shah]
 H. Shahgholian, Convexity and uniqueness in an inverse problem of potential theory, Proc. Amer. Math. Soc. vol. 116, nr 4, 1992, 10971100. MR 93b:31008
 [sh]
 H. S. Shapiro, The Schwarz Function and its Generalization to Higher Dimensions, Wiley, New York, University of Arkansas Lecture Notes, 1992. MR 93g:30059
 [t]
 P. Tolksdorf, On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Comm. Partial Diff. Eq., 8(7), 1983, pp. 773817. MR 85g:35053
 [z]
 L. Zalcman, Some inverse problems of potential theory, Contemp. Math. vol 63, Amer. Math. Soc., Providence, RI, 1987, 337350. MR 88e:31012
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
31B20,
35J05,
35R35
Retrieve articles in all journals
with MSC (1991):
31B20,
35J05,
35R35
Additional Information
Farid Bahrami
Affiliation:
Department of Mathematics, University of Tehran, P.O. Box 131451873, Tehran, Iran
Henrik Shahgholian
Affiliation:
Department of Mathematics, The Royal Institute of Technology, 100 44 Stockholm, Sweden
Email:
henriks@math.kth.se
DOI:
http://dx.doi.org/10.1090/S0002993998040878
PII:
S 00029939(98)040878
Keywords:
Inverse domain problem,
pLaplacian,
uniqueness
Received by editor(s):
April 3, 1996
Received by editor(s) in revised form:
August 28, 1996
Communicated by:
J. Marshall Ash
Article copyright:
© Copyright 1998
American Mathematical Society
