Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Crossed products of Hilbert $\mathrm{C}^{\ast}$-bimodules
by countable discrete groups

Authors: Tsuyoshi Kajiwara and Yasuo Watatani
Journal: Proc. Amer. Math. Soc. 126 (1998), 841-851
MSC (1991): Primary 46L05, 46L37, 46L55
MathSciNet review: 1423344
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a notion of crossed products of Hilbert C${}^{*}$-bimodules by countable discrete groups and mainly study the case of finite groups following Jones index theory. We give a sufficient condition such that the crossed product bimodule is irreducible. We have a bimodule version of Takesaki-Takai duality. We show the categorical structures when the action is properly outer, and give some example of this construction concerning the orbifold constructions.

References [Enhancements On Off] (What's this?)

  • [Bl] B. Blackadar, K-Theory for operator algebras, MSRI Publications 5 (1986). MR 88g:46082
  • [Ch] M. Choda, Duality for finite bipartite graphs (with application to ${\mathrm{II}}_{1}$ factors), Pacific J. Math. 158 (1993), 49-65. MR 94e:46113
  • [CK] M. Choda and H. Kosaki, Strongly outer actions for an inclusion of factors, J. Funct. Anal. 122 (1994), 315-332. MR 96b:46085
  • [CKRW] D. Crocker, A. Kumjian, I. Raeburn and D. P. Williams, An equivariant Brauer group and actions of group $C^*$-algebras, J. Funct. Anal. 146 (1997), 171-184.
  • [CMW] R. E. Curto, P. S. Muhly and D. P. Williams, Cross products of strongly Morita equivalent C${}^*$-algebras, Proc. AMS. 90 (1984), 528-530. MR 85i:46083
  • [Co] F. Combes, Crossed products and Morita equivalence, Proc. London Math. Soc. 49 (1984), 289-306. MR 86c:46081
  • [Go] S.Goto, Orbifold construction for Non-AFD subfactors, Internat. J. Math. 5 (1994), 725-746. MR 95h:46094
  • [I1] M. Izumi, Application of fusion rules to classification of subfactors, Publ. RIMS Kyoto Univ. 27 (1991), 953-994. MR 93b:46121
  • [I2] M.Izumi, On type II and type III principal graphs of subfactors, Math. Scand. 73 (1993), 307-319. MR 95a:46084
  • [Jo] V. Jones, Index for subfactors, Invent. Math. 72 (1983), 1-25. MR 84d:46097
  • [Kaj] T. Kajiwara, Remarks on strongly Morita equivalent C${}^*$-crossed products, Math. Japon. 32 (1987), 257-260. MR 89h:46095
  • [Kas] G.G.Kasparov, K-theory, group C${}^*$-algebras and higher signatures (Conspectus), Chernogolovka (1981).
  • [Kat] Y. Katayama Takesaki's duality on bipartite graph, preprint.
  • [Kaw] Y. Kawahigashi, On flatness of Ocneanu's connections on the Dynkin diagrams and classification of subfactors, J. Funct. Annal. 127 (1995), 63-107. MR 95j:46075
  • [KaY] T. Kajiwara and S. Yamagami, Irreducible bimodules associated with crossed product algebras $II$, Pac. J. Math. 171 (1995), 209-229. MR 96m:46124
  • [Kh] M. Khoshkam, Hilbert C${}^*$-modules and conditional expectations on crossed products, J.Austral. Math. Soc. 61 (1996), 106-118. CMP 96:16
  • [KW] T. Kajiwara and Y. Watatani, Jones index theory by Hilbert C${}^{*}$-bimodules and K-theory, preprint.
  • [Ko1] H. Kosaki, Automorphisms in the irreducible decompositions of sectors, Quantum and Non Commutative Analysis, Kluwer Academic (1993), 305-316. MR 95e:46073
  • [Ko2] H. Kosaki, Sector theory and automorphisms for factor - subfactor pairs, J. Math. Soc. Japan 48 (1996), 427-454. MR 97e:46083
  • [KoY] H. Kosaki and S. Yamagami, Irreducible bimodules associated with crossed product algebras, Int. Math. J. (1992), 661-676. MR 94f:46087
  • [KRW] A. Kumjian, I. Raeburn and D. P. Williams, The equivariant Brauer groups of commuting free and proper actions are isomorphic, Proc. Amer. Math. Soc. 124 (1996), 809-817. MR 96f:46107
  • [Oc] A. Ocneanu, Quantized groups, string algebras, and Galois theory for algebra , in Operator Algebras and Applications. Vol $II$, London Mathematical Lecture Note Series Vol. 136, Cambridge Univ. Press, 1988, 119-172. MR 91k:46068
  • [Po1] S. Popa, On the classification of actions of amenable groups on subfactors, C.R. Acad. Sc. Paris. 315 (1992), 295-299. MR 93i:46110
  • [Po2] S. Popa, Classification of amenable subfactor of type $II$, Acta Math. 172 (1994), 163-255. MR 95f:46105
  • [PP] M. Pimsner and S. Popa, Entropy and index for subfactors, Ann. Scient. Ec. Norm. Sup. 19 (1986), 57-106. MR 87m:46120
  • [Ri1] M. A. Rieffel, Induced representations of C${}^*$-algebras, Adv. Math. 13 (1974), 176-257. MR 50:5489
  • [Ri2] M. A. Rieffel, Morita equivalence for C${}^*$-algebras and ${\mathrm{W}}^{*}$-algebras, J. Pure Appl. Algebras 5 (1974), 51-96. MR 51:3912
  • [Ri3] M. A. Rieffel, Morita equivalence for operator algebras, Proc. Sympos. Pure Math. Amer. Math. Soc. 38, Part1 (1982), 285-298. MR 84k:46045
  • [Wa] Y. Watatani, Index for $C^{*}$-subalgebras, Memoir Amer. Math. Soc. 83, no. 424 (1990), 1-117. MR 90i:46104
  • [Y] S. Yamagami, Group symmetry in tensor categories, preprint.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46L05, 46L37, 46L55

Retrieve articles in all journals with MSC (1991): 46L05, 46L37, 46L55

Additional Information

Tsuyoshi Kajiwara
Affiliation: Department of Environmental and Mathematical Sciences, Okayama University, Tsushima, Okayama 700, Japan

Yasuo Watatani
Affiliation: Graduate School of Mathematics, Kyushu University, Ropponmatsu, Fukuoka, 810 Japan

Received by editor(s): May 15, 1996
Received by editor(s) in revised form: September 10, 1996
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society