Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Minkowski's inequality
for two variable difference means


Authors: László Losonczi and Zsolt Páles
Journal: Proc. Amer. Math. Soc. 126 (1998), 779-789
MSC (1991): Primary 26D15, 26D07
DOI: https://doi.org/10.1090/S0002-9939-98-04125-2
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study Minkowski's inequality

\begin{displaymath}D_{a\,b}(x_1+x_2, y_1+y_2)\le D_{a\,b}(x_1, y_1)+D_{a\,b}(x_2,y_2) \quad(x_1,x_2, y_1,y_2\in \mathbb R_+) \end{displaymath}

and its reverse where $D_{a\,b}$ is the difference mean introduced by Stolarsky. We give necessary and sufficient conditions (concerning the parameters $a,b$) for the inequality above (and for its reverse) to hold.


References [Enhancements On Off] (What's this?)

  • 1. W. H. Adams, Heat transmission, McGraw-Hill, New York, 1954.
  • 2. H. Alzer, Bestmögliche Abschätzungen für spezielle Mittelwerte, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat.Fak. Ser. Mat., 23(1) 1993, 331-346. MR 95m:26028
  • 3. J. Brenner, A unified treatment and extension of some means of classical analysis I. Comparison theorems, J. Combin. Inform System Sci., 3 1978, 175-199. MR 80d:26017
  • 4. J. Brenner and B. C. Carlson, Homogeneous mean values: Weights and asymptotics, J. Math. Anal. Appl., 123 1987, 265-280. MR 88g:26023b
  • 5. F. Burk, By all means, Amer. Math. Monthly, 92 1985, 50.
  • 6. B. C. Carlson, The logarithmic mean, Amer. Math. Monthly, 79 1972, 615-618. MR 46:1985
  • 7. E. L. Dodd, Some generalization of the logarithmic mean and of similar means of two variates which become indeterminate when the two variates are equal, Ann. Math. Statist., 12 1941, 422-428. MR 3:170e
  • 8. P. Flandrin and P. Gonçalvès, Geometry of affine time-frequency distributions, Applied and Computational Harmonic Anal., 3 (1996), 10-39. MR 96:94002
  • 9. J.-B. Hiriart-Urruty and C. Lemarechál, Convex Analysis and Minimization Algorithms I, Springer Verlag, Heidelberg, 1993. MR 95m:90001
  • 10. E. Leach and M. Sholander, Extended mean values, Amer. Math. Monthly, 85 1978, 84-90. MR 58:22428
  • 11. E. Leach and M. Sholander, Extended mean values II, J. Math. Anal. Appl., 92 1983, 207-223. MR 85b:26007
  • 12. E. Leach and M. Sholander, Multi-variable extended mean values, J. Math. Anal. Appl., 104 1984, 390-407. MR 86b:26033
  • 13. T. P. Lin, The power mean and the logarithmic mean, Amer. Math. Monthly, 81 1974, 879-883. MR 50:7449
  • 14. E. Neuman, The weighted logarithmic mean, J. Math. Anal. Appl., 188 1994, 885-900. MR 95k:26018
  • 15. Zs. Páles, Inequalities for differences of powers, J. Math. Anal. Appl., 131 1988, 271-281. MR 89f:26023
  • 16. Zs. Páles, Comparison of two variable homogeneous means, General Inequalities 6. Proc. 6th Internat. Conf. Math. Res. Inst. Oberwolfach, Birkhäuser Verlag Basel, 1992, pp. 59-69. MR 94b:26016
  • 17. A. O. Pittenger, The symmetric, logarithmic, and power means, Univ. Beograd. Publ. Elektrotehn. Fak., Ser. Mat.Fiz. No. 681 1980, 19-23. MR 83i:26016b
  • 18. A. O. Pittenger, The logarithmic mean in $n$ variables, Amer. Math. Monthly, 92 1985, 99-104. MR 86h:26012
  • 19. G. Pólya and G. Szego, Isoperimetric inequalities in mathematical physics, Princeton Univ. Press, Princeton, N. J., 1951. MR 13:270d
  • 20. K. B. Stolarsky, Generalizations of the logarithmic mean, Math. Mag., 48 1975, 87-92. MR 50:10186
  • 21. K. B. Stolarsky, The power and generalized logarithmic means, Amer. Math. Monthly, 87 1980, 545-548. MR 82g:26029
  • 22. J. Sándor, On certain inequalities for means, J. Math. Anal. Appl., 189 1995, 602-606. MR 95k:26025
  • 23. H. Seiffert, Ungleichungen für einen bestimmten Mittelwert, Nieuw Arch. Wisk., 13 1995, 195-198. MR 96h:26025
  • 24. H. Seiffert, Ungleichungen für elementare Mittelwerte, Arch. Math. (Basel), 64 1995, 129-131. MR 95j:26026
  • 25. G. Székely, A classification of means, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 18 1975, 129-133. MR 54:7723
  • 26. K. Tettamanti, G. Sárkány, D. Králik and R.Somfai, Über die Annäherung logarithmischer Funktionen durch algebraische Funktionen, Period. Polytech. Chem. Engrg., 14 1970, 99-111.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 26D15, 26D07

Retrieve articles in all journals with MSC (1991): 26D15, 26D07


Additional Information

László Losonczi
Affiliation: Department of Mathematics and Computer Science, Kuwait University, P.O.Box 5969 Safat, 13060 Kuwait
Email: losonczi@math-1.sci.kuniv.edu.kw

Zsolt Páles
Affiliation: Institute of Mathematics, Lajos Kossuth University H-4010 Debrecen, Pf. 12, Hungary
Email: pales@math.klte.hu

DOI: https://doi.org/10.1090/S0002-9939-98-04125-2
Keywords: Difference means, Minkowski's inequality
Received by editor(s): April 3, 1996
Received by editor(s) in revised form: September 3, 1996
Additional Notes: Research of the first author supported by Kuwait University Grant SM 145 and research of the second author by the Hungarian National Foundation for Scientific Research (OTKA), Grant No. T-016846.
Communicated by: J. Marshall Ash
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society