Examples of chain domains

Authors:
R. Mazurek and E. Roszkowska

Journal:
Proc. Amer. Math. Soc. **126** (1998), 661-667

MSC (1991):
Primary 16D15, 16D25; Secondary 16N80

MathSciNet review:
1423319

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a nonzero ordinal such that for every ordinal . A chain domain (i.e. a domain with linearly ordered lattices of left ideals and right ideals) is constructed such that is isomorphic with all its nonzero factor-rings and is the ordinal type of the set of proper ideals of . The construction provides answers to some open questions.

**1.**Ulrich Albrecht and Günter Törner,*Group rings and generalized valuations*, Comm. Algebra**12**(1984), no. 17-18, 2243–2272. MR**747226**, 10.1080/00927878408823106**2.**V. A. Andrunakievič and Ju. M. Rjabuhin,*Radikaly algebr i strukturnaya teoriya*, “Nauka”, Moscow, 1979 (Russian). Sovremennaya Algebra. [Contemporary Algebra]. MR**548864****3.**P. M. Cohn,*Free rings and their relations*, 2nd ed., London Mathematical Society Monographs, vol. 19, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1985. MR**800091****4.**N. I. Dubrovin,*Chain domains*, Vestnik Moskov. Univ. Ser. I Mat. Mekh.**2**(1980), 51–54, 104 (Russian, with English summary). MR**570590****5.**B. J. Gardner,*Simple rings whose lower radicals are atoms*, Acta Math. Hungar.**43**(1984), no. 1-2, 131–135. MR**731971**, 10.1007/BF01951333**6.**W. G. Leavitt and L. C. A. van Leeuwen,*Rings isomorphic with all proper factor-rings*, Ring theory (Proc. Antwerp Conf. (NATO Adv. Study Inst.), Univ. Antwerp, Antwerp, 1978) Lecture Notes in Pure and Appl. Math., vol. 51, Dekker, New York, 1979, pp. 783–798. MR**563323****7.**E. R. Puczyłowski,*Some questions concerning radicals of associative rings*, Theory of radicals (Szekszárd, 1991) Colloq. Math. Soc. János Bolyai, vol. 61, North-Holland, Amsterdam, 1993, pp. 209–227. MR**1243913****8.**Edmund R. Puczyłowski and Ewa Roszkowska,*Atoms of lattices of radicals of associative rings*, Radical theory (Sendai, 1988) Uchida Rokakuho, Tokyo, 1989, pp. 123–134. MR**999585****9.**Edmund R. Puczyłowski and Ewa Roszkowska,*On atoms and coatoms of lattices of radicals of associative rings*, Comm. Algebra**20**(1992), no. 4, 955–977. MR**1154396**, 10.1080/00927879208824385**10.**Robert L. Snider,*Lattices of radicals*, Pacific J. Math.**40**(1972), 207–220. MR**0308175****11.**J. F. Watters,*Non-commutative minimally non-Noetherian rings*, Math. Scand.**40**(1977), no. 2, 176–182. MR**0457489**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
16D15,
16D25,
16N80

Retrieve articles in all journals with MSC (1991): 16D15, 16D25, 16N80

Additional Information

**R. Mazurek**

Affiliation:
Institute of Mathematics, University of Warsaw, Białystok Division, Akademicka 2, 15-267 Białystok, Poland

Email:
mazurek@cksr.ac.bialystok.pl

**E. Roszkowska**

Affiliation:
Faculty of Economy, University of Warsaw, Białystok Division, Sosnowa 62, 15-887 Białystok, Poland

Address at time of publication:
Faculty of Economy, University in Białystok, Warszawska 63, 15-062 Białystok, Poland

DOI:
https://doi.org/10.1090/S0002-9939-98-04127-6

Received by editor(s):
December 1, 1995

Received by editor(s) in revised form:
August 27, 1996

Communicated by:
Ken Goodearl

Article copyright:
© Copyright 1998
American Mathematical Society