Examples of chain domains

Authors:
R. Mazurek and E. Roszkowska

Journal:
Proc. Amer. Math. Soc. **126** (1998), 661-667

MSC (1991):
Primary 16D15, 16D25; Secondary 16N80

DOI:
https://doi.org/10.1090/S0002-9939-98-04127-6

MathSciNet review:
1423319

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a nonzero ordinal such that for every ordinal . A chain domain (i.e. a domain with linearly ordered lattices of left ideals and right ideals) is constructed such that is isomorphic with all its nonzero factor-rings and is the ordinal type of the set of proper ideals of . The construction provides answers to some open questions.

**1.**U. Albrecht and G. Törner,*Group rings and generalized valuations*, Comm. Algebra**12**(1984), 2243-2272. MR**85f:16013****2.**V. A. Andrunakievich and J. M. Ryabukhin,*Radicals of algebras and structural theory*(Russian), Nauka, Moscow, 1979. MR**82a:16001****3.**P. M. Cohn,*Free rings and their relations*, London Math. Soc. Monographs No. 19, Academic Press, London, 1985. MR**87e:16006****4.**N. I. Dubrovin,*Chain domains*(Russian), Vestnik Moscov. Univ. Ser. I Mat. Meh. 1980, no. 2, 51-54. MR**81g:16004****5.**B. J. Gardner,*Simple rings whose lower radicals are atoms*, Acta Math. Hungar.**43**(1984), 131-135. MR**85a:16007****6.**W. G. Leavitt and L. C. A. van Leeuwen,*Rings isomorphic with all proper factor-rings*, Ring theory (Proc. 1978 Antwerp Conf.), Marcel Dekker, New York and Basel, 1979, 783-798. MR**81i:16010****7.**E. R. Puczy{\l}owski,*Some questions concerning radicals of associative rings*, Theory of Radicals (Proc. Conf. Szekszard, 1991), 209-227, Colloq. Math. Soc. János Bolyai, Vol. 61, North-Holland, Amsterdam, 1993. MR**94j:16033****8.**E. R. Puczy{\l}owski and E. Roszkowska,*Atoms of lattices of radicals of associative rings*, Radical Theory (Proc. Conf. Sendai, 1988), 123-134. MR**90e:16009****9.**-,*On atoms and coatoms in lattices of radicals of associative rings*, Comm. Algebra**20**(1992), 955-977. MR**93e:16032****10.**R. L. Snider,*Lattices of radicals*, Pacific J. Math.**40**(1972), 207-220. MR**46:7290****11.**J. F. Watters,*Noncommutative minimally non-Noetherian rings*, Math. Scand.**40**(1977), 176-182. MR**56:15694**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
16D15,
16D25,
16N80

Retrieve articles in all journals with MSC (1991): 16D15, 16D25, 16N80

Additional Information

**R. Mazurek**

Affiliation:
Institute of Mathematics, University of Warsaw, Białystok Division, Akademicka 2, 15-267 Białystok, Poland

Email:
mazurek@cksr.ac.bialystok.pl

**E. Roszkowska**

Affiliation:
Faculty of Economy, University of Warsaw, Białystok Division, Sosnowa 62, 15-887 Białystok, Poland

Address at time of publication:
Faculty of Economy, University in Białystok, Warszawska 63, 15-062 Białystok, Poland

DOI:
https://doi.org/10.1090/S0002-9939-98-04127-6

Received by editor(s):
December 1, 1995

Received by editor(s) in revised form:
August 27, 1996

Communicated by:
Ken Goodearl

Article copyright:
© Copyright 1998
American Mathematical Society