Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The 6-property for simplicial complexes
and a combinatorial Cartan-Hadamard theorem
for manifolds


Authors: J. M. Corson and B. Trace
Journal: Proc. Amer. Math. Soc. 126 (1998), 917-924
MSC (1991): Primary 57M20, 57N10, 20F06
DOI: https://doi.org/10.1090/S0002-9939-98-04158-6
MathSciNet review: 1425116
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The 6-property for 2-dimensional simplicial complexes is the condition that every nontrivial circuit in the link of a vertex has length greater than or equal to six. If a compact $n$-manifold $M$ has a 2-dimensional spine with the 6-property, then we show that the interior of $M$ is covered by euclidean $n$-space. In dimension $n=3$, we show further that such a 3-manifold is Haken.


References [Enhancements On Off] (What's this?)

  • [AB] J. M. Alonso and M. R. Bridson, Semihyperbolic groups, Proc. London Math. Soc. (3) 70 (1995), 56-114. MR 95j:20033
  • [BM] S. G. Brick and M. L. Mihalik, The qsf property for groups and spaces, Math. Z. 220 (1995), 207-217. MR 96i:57009
  • [B] M. Brown, The monotone union of open $n$-cells is an open $n$-cell, Proc. Amer. Math. Soc. 12 (1961), 812-814. MR 23:A4129
  • [CT] J. Corson and B. Trace, Geometry and algebra of nonspherical 2-complexes, J. London Math. Soc. 54 (1996), 180-198. CMP 96:14
  • [D] M. W. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. 117 (1983), 293-324. MR 86d:57025
  • [LS] R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Ergeb. Math., Bd. 89, Springer, New York, 1977. MR 58:28182
  • [MT] M. L. Mihalik and S. T. Tschantz, Tame combings of groups, Trans. Amer. Math. Soc. (to appear). CMP 96:12
  • [P] V. Poénaru, Almost convex groups, Lipschitz combing, and $\pi _{1}^{\infty }$ for universal covering spaces of closed $3$-manifolds, J. Differential Geom. 35 (1992), 103-130. MR 93d:57032
  • [RS] C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Ergeb. Math., Bd. 69, Springer, New York, 1972. MR 50:3236
  • [S] J. R. Stallings, Brick's quasi simple filtrations for groups and 3-manifolds, Geometric group theory (G. A. Niblo and M. A. Roller, eds.), vol. 1, Cambridge University Press, Cambridge, 1993, pp. 188-203. MR 94k:57004
  • [SG] J. Stallings and S. M. Gersten, Casson's idea about $3$-manifolds whose universal cover is ${\mathbb R}^{3}$, Internat. J. Algebra Comput. 1 (1991), 395-406. MR 93b:57018

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 57M20, 57N10, 20F06

Retrieve articles in all journals with MSC (1991): 57M20, 57N10, 20F06


Additional Information

J. M. Corson
Affiliation: Department of Mathematics, University of Alabama, Box 870350, Tuscaloosa, Alabama 35487-0350
Email: jcorson@mathdept.as.ua.edu

B. Trace
Affiliation: Department of Mathematics, University of Alabama, Box 870350, Tuscaloosa, Alabama 35487-0350
Email: btrace@mathdept.as.ua.edu

DOI: https://doi.org/10.1090/S0002-9939-98-04158-6
Keywords: Manifold, spine, universal cover, 6-property, collapsing
Received by editor(s): March 26, 1996
Received by editor(s) in revised form: September 3, 1996
Communicated by: Ronald A. Fintushel
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society