Some remarks on a boundedness assumption

for monotone dynamical systems

Author:
E. N. Dancer

Journal:
Proc. Amer. Math. Soc. **126** (1998), 801-807

MSC (1991):
Primary 47H15

DOI:
https://doi.org/10.1090/S0002-9939-98-04276-2

MathSciNet review:
1443378

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the consequences of the assumption that all forward orbits are bounded for monotone dynamical systems. In particular, it turns out that this assumption has more implications than is immediately apparent.

**1.**Y.A. Abramovich and A.W. Wickstead,*A compact regular operator without modulus*, Proc. Amer. Math. Soc.**116**(1992), 721-726. MR**93a:47038****2.**E.N. Dancer,*Upper and lower stability and index theory for positive mappings and applications*, Nonlinear Analysis TMA 17 (1991), 205-217. MR**92k:47122****3.**E.N. Dancer,*Global solution branches for positive mappings*, Archives Rational Mech Anal**52**(1973), 181-192. MR**50:5563****4.**E.N. Dancer,*Multiple fixed points of positive mappings*, J. Reine Ang. Math.**371**(1986), 46-66. MR**88b:58020****5.**E.N. Dancer,*Fixed point calculations and applications*, p 303-340 in Topological Nonlinear Analysis (Matzeu and Vignoli, eds.), Birkhauser, Boston, 1995. MR**95i:58006****6.**E.N. Dancer and P. Hess,*Stability of fixed points for order-preserving discrete-time dynamical systems*, J. Reine Ang. Math.**419**(1991), 125-139. MR**92i:47088****7.**M. Hirsch,*Fixed points of monotone mappings*, J. Differential Equations**123**(1995), 171-179. MR**96h:47062****8.**M.A. Kransnosel'skii,*Positive solutions of operator equations*, Noordhoff, Groningen, 1964. MR**31:6107****9.**Jiang Ji-Fa,*On the global stability of cooperative systems*, Bull London Math Soc**26**(1994), 455-458.**10.**P. Polacik and I. Terescak,*Convergence to cycles as a typical asymptotic behaviour in smooth strongly monotone dynamical systems*, Archives Rational Mech Anal**116**(1992), 339-360. MR**93b:58088****11.**H.H. Schaefer,*Topological vector spaces*, Springer, Berlin, 1971. MR**49:7722****12.**H. Smith and H. Thieme,*Convergence for strongly order-preserving semiflows*, SIAM J. Math Anal**22**(1991), 1081-1101. MR**92m:34145****13.**H. Smith,*Monotone dynamical systems*, Amer. Math. Soc. Providence, 1995. MR**96c:34002****14.**A. Vanderbauwhede,*Invariant manifolds in infinite dimensions*, in Dynamics of Infinite Dimensional Systems, pp 409-420, Springer, Berlin, 1987. MR**89e:47098**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
47H15

Retrieve articles in all journals with MSC (1991): 47H15

Additional Information

**E. N. Dancer**

Affiliation:
School of Mathematics and Statistics, University of Sydney, N.S.W. 2006, Australia

Email:
dancer_n@maths.su.oz.au

DOI:
https://doi.org/10.1090/S0002-9939-98-04276-2

Received by editor(s):
September 5, 1996

Communicated by:
Hal L. Smith

Article copyright:
© Copyright 1998
American Mathematical Society