Some remarks on a boundedness assumption

for monotone dynamical systems

Author:
E. N. Dancer

Journal:
Proc. Amer. Math. Soc. **126** (1998), 801-807

MSC (1991):
Primary 47H15

MathSciNet review:
1443378

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the consequences of the assumption that all forward orbits are bounded for monotone dynamical systems. In particular, it turns out that this assumption has more implications than is immediately apparent.

**1.**Y. A. Abramovich and A. W. Wickstead,*A compact regular operator without modulus*, Proc. Amer. Math. Soc.**116**(1992), no. 3, 721–726. MR**1098395**, 10.1090/S0002-9939-1992-1098395-7**2.**E. N. Dancer,*Upper and lower stability and index theory for positive mappings and applications*, Nonlinear Anal.**17**(1991), no. 3, 205–217. MR**1120974**, 10.1016/0362-546X(91)90048-6**3.**E. N. Dancer,*Global solution branches for positive mappings*, Arch. Rational Mech. Anal.**52**(1973), 181–192. MR**0353077****4.**E. N. Dancer,*Multiple fixed points of positive mappings*, J. Reine Angew. Math.**371**(1986), 46–66. MR**859319**, 10.1515/crll.1986.371.46**5.**Michele Matzeu and Alfonso Vignoli (eds.),*Topological nonlinear analysis*, Progress in Nonlinear Differential Equations and their Applications, 15, Birkhäuser Boston, Inc., Boston, MA, 1995. Degree, singularity, and variations. MR**1322322****6.**E. N. Dancer and P. Hess,*Stability of fixed points for order-preserving discrete-time dynamical systems*, J. Reine Angew. Math.**419**(1991), 125–139. MR**1116922****7.**Morris W. Hirsch,*Fixed points of monotone maps*, J. Differential Equations**123**(1995), no. 1, 171–179. MR**1359916**, 10.1006/jdeq.1995.1161**8.**M. A. Krasnosel′skiĭ,*Positive solutions of operator equations*, Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron, P. Noordhoff Ltd. Groningen, 1964. MR**0181881****9.**Jiang Ji-Fa,*On the global stability of cooperative systems*, Bull London Math Soc**26**(1994), 455-458.**10.**P. Poláčik and I. Tereščák,*Convergence to cycles as a typical asymptotic behavior in smooth strongly monotone discrete-time dynamical systems*, Arch. Rational Mech. Anal.**116**(1992), no. 4, 339–360. MR**1132766**, 10.1007/BF00375672**11.**Helmut H. Schaefer,*Topological vector spaces*, Springer-Verlag, New York-Berlin, 1971. Third printing corrected; Graduate Texts in Mathematics, Vol. 3. MR**0342978****12.**Hal L. Smith and Horst R. Thieme,*Convergence for strongly order-preserving semiflows*, SIAM J. Math. Anal.**22**(1991), no. 4, 1081–1101. MR**1112067**, 10.1137/0522070**13.**Hal L. Smith,*Monotone dynamical systems*, Mathematical Surveys and Monographs, vol. 41, American Mathematical Society, Providence, RI, 1995. An introduction to the theory of competitive and cooperative systems. MR**1319817****14.**A. Vanderbauwhede,*Invariant manifolds in infinite dimensions*, Dynamics of infinite-dimensional systems (Lisbon, 1986) NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., vol. 37, Springer, Berlin, 1987, pp. 409–420. MR**921925**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
47H15

Retrieve articles in all journals with MSC (1991): 47H15

Additional Information

**E. N. Dancer**

Affiliation:
School of Mathematics and Statistics, University of Sydney, N.S.W. 2006, Australia

Email:
dancer_n@maths.su.oz.au

DOI:
https://doi.org/10.1090/S0002-9939-98-04276-2

Received by editor(s):
September 5, 1996

Communicated by:
Hal L. Smith

Article copyright:
© Copyright 1998
American Mathematical Society