Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A classification of all $D$
such that $Int(D)$ is a Prüfer domain


Author: K. Alan Loper
Journal: Proc. Amer. Math. Soc. 126 (1998), 657-660
MSC (1991): Primary 13F05, 13F20; Secondary 13B25, 11C08
DOI: https://doi.org/10.1090/S0002-9939-98-04459-1
MathSciNet review: 1459137
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $D$ be an integral domain with quotient field $K$. The ring of integer-valued polynomials $Int(D)$ over $D$ is defined by $Int(D) = \{f(x) \in K[x] \mid f(D) \subseteq D\}$. It is known that if $Int(D)$ is a Prüfer domain, then $D$ is an almost Dedekind domain with all residue fields finite. This condition is necessary and sufficient if $D$ is Noetherian, but has been shown to not be sufficient if $D$ is not Noetherian. Several authors have come close to a complete characterization by imposing bounds on orders of residue fields of $D$ and on normalized values of particular elements of $D$. In this note we give a double-boundedness condition which provides a complete charaterization of all integral domains $D$ such that $Int(D)$ is a Prüfer domain.


References [Enhancements On Off] (What's this?)

  • 1. P.-J. Cahen and J.-L. Chabert, Integer-valued polynomials, Mathematical surveys and monographs: No. 48, American Mathematical Society, Providence, RI, 1997. CMP 97:04
  • 2. J.-L. Chabert, Un anneau de Prüfer, J. Algebra 107 (1987), 1-16. MR 88i:13022
  • 3. J.-L. Chabert, Integer-Valued Polynomials, Prüfer Domains and Localization, Proc. Amer. Math. Soc. 118 (1993), 1061-1073. MR 93j:13025
  • 4. R. Gilmer, Prüfer domains and rings of integer-valued polynomials, J. Algebra 129 (1990), 502-517. MR 91b:13023
  • 5. A. Loper, Sequence domains and integer-valued polynomials, J. Pure Appl. Algebra, (to appear).
  • 6. D. McQuillan, On Prüfer domains of polynomials, J. reine angew. Math. 358 (1985), 162-178. MR 86k:13019
  • 7. A. Ostrowski, Über ganzwertige Polynome in algebraischen Zahlkörpern, J. reine angew. Math. 149 (1919), 117-124.
  • 8. G. Polya, Über ganzwertige Polynome in algebraischen Zahlkörpern, J. reine angew. Math. 149 (1919), 97-116.
  • 9. D. Rush, The conditions $\operatorname{Int}(R) \subseteq R_S[X]$ and $\operatorname{Int}(R_S) = \operatorname{Int}(R)_S$ for integer-valued polynomials, J. Pure Appl. Algebra, (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 13F05, 13F20, 13B25, 11C08

Retrieve articles in all journals with MSC (1991): 13F05, 13F20, 13B25, 11C08


Additional Information

K. Alan Loper
Affiliation: Department of Mathematics, Ohio State University-Newark, Newark, Ohio 43055
Email: lopera@math.ohio-state.edu

DOI: https://doi.org/10.1090/S0002-9939-98-04459-1
Received by editor(s): August 26, 1996
Communicated by: Wolmer V. Vasconcelos
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society