Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Groups acting on cubes
and Kazhdan's property (T)

Authors: Graham A. Niblo and Martin A. Roller
Journal: Proc. Amer. Math. Soc. 126 (1998), 693-699
MSC (1991): Primary 20E34; Secondary 20F32, 05C25
MathSciNet review: 1459140
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that a group $G$ contains a subgroup $K$ with $e(G,K) > 1$ if and only if it admits an action on a connected cube that is transitive on the hyperplanes and has no fixed point. As a corollary we deduce that a countable group $G$ with such a subgroup does not satisfy Kazhdan's property (T).

References [Enhancements On Off] (What's this?)

  • 1. Martin R. Bridson, Geodesics and curvature in metric simplicial complexes, Group theory from a geometrical viewpoint (Trieste, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 373–463. MR 1170372
  • 2. Pierre de la Harpe and Alain Valette, La propriété (𝑇) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque 175 (1989), 158 (French, with English summary). With an appendix by M. Burger. MR 1023471
  • 3. Warren Dicks and M. J. Dunwoody, Groups acting on graphs, Cambridge Studies in Advanced Mathematics, vol. 17, Cambridge University Press, Cambridge, 1989. MR 1001965
  • 4. D. B. A. Epstein, Ends, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 110–117. MR 0158380
  • 5. G. Elek, M. Ramachandran, Two remarks on groups with Kazhdan's property (T), Preprint, SUNY , Buffalo (May 1996).
  • 6. P. H. Kropholler and M. A. Roller, Splittings of Poincaré duality groups, Math. Z. 197 (1988), no. 3, 421–438. MR 926850, 10.1007/BF01418340
  • 7. P. H. Kropholler and M. A. Roller, Relative ends and duality groups, J. Pure Appl. Algebra 61 (1989), no. 2, 197–210. MR 1025923, 10.1016/0022-4049(89)90014-5
  • 8. G.A. Niblo, L.D. Reeves, Groups acting on CAT(0) cube complexes, Geometry and Topology 1 (1997), 1-7. CMP 97:07
  • 9. J.H. Rubinstein, S. Wang, On $\pi _{1}$-injective surfaces in graph manifolds, Preprint, Melbourne University.
  • 10. Michah Sageev, Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. (3) 71 (1995), no. 3, 585–617. MR 1347406, 10.1112/plms/s3-71.3.585
  • 11. M. Sageev, Codimension-1 subgroups and splittings of groups, Preprint, University of Southampton, 1996. J. Algebra 189 (1997), 377-389. CMP 97:09
  • 12. Peter Scott, Ends of pairs of groups, J. Pure Appl. Algebra 11 (1977/78), no. 1-3, 179–198. MR 487104, 10.1016/0022-4049(77)90051-2

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 20E34, 20F32, 05C25

Retrieve articles in all journals with MSC (1991): 20E34, 20F32, 05C25

Additional Information

Graham A. Niblo
Affiliation: Faculty of Mathematical Studies, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom

Martin A. Roller
Affiliation: Mathematik, Universität Regensburg, 93040 Regensburg, Germany

Keywords: Geometric group theory, ends, Kazhdan's property (T)
Received by editor(s): September 9, 1996
Communicated by: Ronald M. Solomon
Article copyright: © Copyright 1998 American Mathematical Society