On certain character sums over
Author:
ChihNung Hsu
Journal:
Proc. Amer. Math. Soc. 126 (1998), 647652
MSC (1991):
Primary 11A07; Secondary 11L40, 11N05
MathSciNet review:
1469411
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be the finite field with elements and let denote the ring of polynomials in one variable with coefficients in . Let be a monic polynomial irreducible in . We obtain a bound for the least degree of a monic polynomial irreducible in ( odd) which is a quadratic nonresidue modulo . We also find a bound for the least degree of a monic polynomial irreducible in which is a primitive root modulo .
 1.
N.
C. Ankeny, The least quadratic non residue, Ann. of Math. (2)
55 (1952), 65–72. MR 0045159
(13,538c)
 2.
E. Artin, `Quadratische Körper im Gebiete der höheren Kongruenzen I, II', Math. Zeitschrift 19 (1924), pp. 153246.
 3.
Gove
W. Effinger and David
R. Hayes, Additive number theory of polynomials over a finite
field, Oxford Mathematical Monographs, The Clarendon Press, Oxford
University Press, New York, 1991. Oxford Science Publications. MR 1143282
(92k:11103)
 4.
G. H. Hardy and E. M. Wright, `An Introduction to the Theory of Numbers', Oxford, Clarendon Press (1945). MR 16:673c (3rd ed.)
 5.
Serguei
A. Stepanov, Arithmetic of algebraic curves, Monographs in
Contemporary Mathematics, Consultants Bureau, New York, 1994. Translated
from the Russian by Irene Aleksanova. MR 1321599
(95j:11055)
 1.
 N. C., Ankeny `The Least Quadratic Non Residue', Annals of Mathematics, Vol 55, No. 1 (1952), pp. 6572. MR 13:538c
 2.
 E. Artin, `Quadratische Körper im Gebiete der höheren Kongruenzen I, II', Math. Zeitschrift 19 (1924), pp. 153246.
 3.
 G. W. Effinger and D. R. Hayes, `Additive Number Theory of Polynomials Over a Finite Field', Oxford, Clarendon Press (1991). MR 92k:11103
 4.
 G. H. Hardy and E. M. Wright, `An Introduction to the Theory of Numbers', Oxford, Clarendon Press (1945). MR 16:673c (3rd ed.)
 5.
 S. A. Stepanov, `Arithmetic Of Algebraic Curves', Translated from Russian by Irene Aleksanova, Plenum Publishing Corporation (1994). MR 95j:11055
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
11A07,
11L40,
11N05
Retrieve articles in all journals
with MSC (1991):
11A07,
11L40,
11N05
Additional Information
ChihNung Hsu
Affiliation:
Department of Mathematics, National Taiwan Normal University, 88 Sec. 4 TingChou Road, Taipei, Taiwan
Email:
maco@math.ntnu.edu.tw
DOI:
http://dx.doi.org/10.1090/S0002993998045821
PII:
S 00029939(98)045821
Keywords:
Riemann Hypothesis,
quadratic nonresidues,
primitive roots
Received by editor(s):
August 20, 1996
Communicated by:
Dennis A. Hejhal
Article copyright:
© Copyright 1998
American Mathematical Society
