Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On certain character sums over $\protect\mathbb F_q[T]$


Author: Chih-Nung Hsu
Journal: Proc. Amer. Math. Soc. 126 (1998), 647-652
MSC (1991): Primary 11A07; Secondary 11L40, 11N05
DOI: https://doi.org/10.1090/S0002-9939-98-04582-1
MathSciNet review: 1469411
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let ${\mathbb F}_{\!q}$ be the finite field with $q$ elements and let $\mathbf{A}$ denote the ring of polynomials in one variable with coefficients in ${\mathbb F}_{\!q}$. Let $P$ be a monic polynomial irreducible in $\mathbf{A}$. We obtain a bound for the least degree of a monic polynomial irreducible in $\mathbf{A}$ ($q$ odd) which is a quadratic non-residue modulo $P$. We also find a bound for the least degree of a monic polynomial irreducible in $\mathbf{A}$ which is a primitive root modulo $P$.


References [Enhancements On Off] (What's this?)

  • 1. N. C., Ankeny `The Least Quadratic Non Residue', Annals of Mathematics, Vol 55, No. 1 (1952), pp. 65-72. MR 13:538c
  • 2. E. Artin, `Quadratische Körper im Gebiete der höheren Kongruenzen I, II', Math. Zeitschrift 19 (1924), pp. 153-246.
  • 3. G. W. Effinger and D. R. Hayes, `Additive Number Theory of Polynomials Over a Finite Field', Oxford, Clarendon Press (1991). MR 92k:11103
  • 4. G. H. Hardy and E. M. Wright, `An Introduction to the Theory of Numbers', Oxford, Clarendon Press (1945). MR 16:673c (3rd ed.)
  • 5. S. A. Stepanov, `Arithmetic Of Algebraic Curves', Translated from Russian by Irene Aleksanova, Plenum Publishing Corporation (1994). MR 95j:11055

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 11A07, 11L40, 11N05

Retrieve articles in all journals with MSC (1991): 11A07, 11L40, 11N05


Additional Information

Chih-Nung Hsu
Affiliation: Department of Mathematics, National Taiwan Normal University, 88 Sec. 4 Ting-Chou Road, Taipei, Taiwan
Email: maco@math.ntnu.edu.tw

DOI: https://doi.org/10.1090/S0002-9939-98-04582-1
Keywords: Riemann Hypothesis, quadratic non-residues, primitive roots
Received by editor(s): August 20, 1996
Communicated by: Dennis A. Hejhal
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society