Extendibility of homogeneous polynomials

on Banach spaces

Authors:
Pádraig Kirwan and Raymond A. Ryan

Journal:
Proc. Amer. Math. Soc. **126** (1998), 1023-1029

MSC (1991):
Primary 46G20; Secondary 46B28

DOI:
https://doi.org/10.1090/S0002-9939-98-04009-X

MathSciNet review:
1415346

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the -homogeneous polynomials on a Banach space that can be extended to any space containing . We show that there is an upper bound on the norm of the extension. We construct a predual for the space of all extendible -homogeneous polynomials on and we characterize the extendible 2-homogeneous polynomials on when is a Hilbert space, an -space or an -space.

**1.**R. Aron,*Extension and lifting theorems for analytic mappings*, Functional Analysis: Surveys and Recent Results II, Math. Stud. 38, North-Holland, 1980, 257-267. MR**81i:46006****2.**R. Aron and P. Berner,*A Hahn-Banach extension theorem for analytic mappings*, Bull. Soc. Math. France**106**(1978), 3-24. MR**80e:46029****3.**A. Defant and K. Floret,*Tensor Norms and Operator Ideals*, North-Holland Math. Studies 176, 1993. MR**94e:46130****4.**A. M. Davie and T. W. Gamelin,*A theorem on polynomial-star approximation*, Proc. Amer. Math. Soc.**106**(1989), 351-356. MR**89k:46023****5.**J. Diestel, H. Jarchow and A. Tonge,*Absolutely Summing Operators*, Cambridge University Press, 1995. MR**96i:46001****6.**S. Dineen and R. Timoney,*Complex geodesics on convex domains*, Progress in Functional Analysis (ed. K. Bierstedt, J. Bonet, J. Horvath and M. Maestre), Math. Studies 170, North-Holland, 1992, 333-365. MR**92m:46066****7.**P. Galindo, D. García, M. Maestre and J. Mujica,*Extension of multilinear mappings on Banach spaces*, Studia Math.**108**(1994), 55-76. MR**95f:46072****8.**M. Lindström and R. A. Ryan,*Applications of ultraproducts to infinite dimensional holomorphy*, Math. Scand.**71**(1992), 229-242. MR**94c:46090****9.**P. Mazet,*A Hahn-Banach theorem for quadratic forms*, preprint.**10.**L. Moraes,*A Hahn-Banach extension theorem for some holomorphic functions*, Complex Analysis, Functional Analysis and Approximation Theory (ed. J. Mujica), Math. Studies 125, North-Holland, 1986, 205-220. MR**88f:46094****11.**R. A. Ryan,*Applications of Topological Tensor Products to Infinite Dimensional Holomorphy*, Ph.D. Thesis, Trinity College, Dublin, 1980.**12.**R. A. Ryan and J. B. Turret,*Products of linear functionals*, Preprint, 1995.**13.**I. Zalduendo,*A canonical extensions for analytic functions on Banach spaces*, Trans. Amer. Math. Soc.**320**(1990), 747-763. MR**90k:46108**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
46G20,
46B28

Retrieve articles in all journals with MSC (1991): 46G20, 46B28

Additional Information

**Pádraig Kirwan**

Affiliation:
Department of Mathematics, University College, Galway, Ireland

Address at time of publication:
Department of Physical and Quantitative Sciences, Waterford Institute of Technology, Waterford, Ireland

Email:
pkirwan@staffmail.wit.ie

**Raymond A. Ryan**

Affiliation:
Department of Mathematics, University College, Galway, Ireland

Email:
ray.ryan@ucg.ie

DOI:
https://doi.org/10.1090/S0002-9939-98-04009-X

Keywords:
Homogeneous polynomial,
extendibility

Received by editor(s):
May 17, 1996

Received by editor(s) in revised form:
July 10, 1996

Communicated by:
Theodore W. Gamelin

Article copyright:
© Copyright 1998
American Mathematical Society