Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Remarks on the non-Cohen-Macaulay locus
of Noetherian schemes

Author: Nguyen Tu Cuong
Journal: Proc. Amer. Math. Soc. 126 (1998), 1017-1022
MSC (1991): Primary 13C99; Secondary 13H10, 14M99
MathSciNet review: 1425118
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we give a notion of polynomial type $p(X)$ of a Noetherian scheme $X$ and define the function $dp:\, X\longrightarrow \mathbb{Z}$ by $dp(x)=\dim O_{X,x} -p(O_{X,x} )$ for all $x\in X.$ Then we show that if $X$ admits a dualizing complex and $X$ is equidimensional, $dp $ is (lower) semicontinuous; moreover, in that case, the non-Cohen-Macaulay locus nCM$(X)=\{ x\in X\mid O_{X,x}$ is not Cohen-Macaulay} is biequidimensional iff $dp $ is constant on nCM$(X).$

References [Enhancements On Off] (What's this?)

  • [C1] Nguy\cftil{e}n Tụ’ Cu’ò’ng, On the dimension of the non-Cohen-Macaulay locus of local rings admitting dualizing complexes, Math. Proc. Cambridge Philos. Soc. 109 (1991), no. 3, 479–488. MR 1094747, 10.1017/S0305004100069929
  • [C2] Cuong, N.T., On the least degree of polynomials bounding above the differences between lengths and multiplicities of certain systems of parameters in local rings, Nagoya Math. J. 125 (1992), 105-114. MR 93c:1348
  • [C-M] Nguyen Tu Cuong and Nguyen Duc Minh, On the openness of the locus of points having polynomial type bounded above by a constant, Tạp chí Toán Học J. Math. 20 (1992), no. 1, 71–76. MR 1367451
  • [G] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 231 (French). MR 0199181
  • [H1] Robin Hartshorne, Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. MR 0222093
  • [H2] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
  • [M] Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344
  • [S] Jean-Pierre Serre, Algèbre locale. Multiplicités, Cours au Collège de France, 1957–1958, rédigé par Pierre Gabriel. Seconde édition, 1965. Lecture Notes in Mathematics, vol. 11, Springer-Verlag, Berlin-New York, 1965 (French). MR 0201468
  • [Sch] Peter Schenzel, Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe, Lecture Notes in Mathematics, vol. 907, Springer-Verlag, Berlin-New York, 1982 (German). With an English summary. MR 654151

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 13C99, 13H10, 14M99

Retrieve articles in all journals with MSC (1991): 13C99, 13H10, 14M99

Additional Information

Nguyen Tu Cuong
Affiliation: Institute of Mathematics, P.O. Box 631, BoHo, 10.000 Hanoi, Vietnam

Received by editor(s): July 3, 1995
Received by editor(s) in revised form: October 7, 1996
Additional Notes: The author is partially supported by the National Basic Research Program of Vietnam.
Communicated by: Wolmer V. Vasconcelos
Article copyright: © Copyright 1998 American Mathematical Society