COMMON OPERATOR PROPERTIES
OF THE LINEAR OPERATORS RS AND SR

BRUCE A. BARNES

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. Let S and R be bounded linear operators defined on Banach spaces, $S : X \to Y$, $R : Y \to X$. When $\lambda \neq 0$, then the operators $\lambda - SR$ and $\lambda - RS$ have many basic operator properties in common. This situation is studied in this paper.

INTRODUCTION

It is a well-know and useful result that when A and B are elements of a Banach algebra, then

$$\sigma(AB) \setminus \{0\} = \sigma(BA) \setminus \{0\}$$

([BD, Prop. 6, p. 16], [R, Lemma (1.4.17)], [P, Prop. 2.1.8]). Here $\sigma(A)$ denotes the spectrum of A. The case where the Banach algebra is $B(X)$, the algebra of all bounded linear operators on a Banach space X, is of special interest.

More generally, let both X and Y be Banach spaces, and let $S : X \to Y$ and $R : Y \to X$ be bounded linear operators. Again, it is known that

$$\sigma(SR) \setminus \{0\} = \sigma(RS) \setminus \{0\}.$$

Here $RS \in B(X)$ and $SR \in B(Y)$. In this paper we study this situation, showing that, in fact, for $\lambda \neq 0$, $\lambda - SR$ and $\lambda - RS$ have many basic operator properties in common (for example: $\lambda - SR$ has closed range if and only if $\lambda - RS$ has closed range). Throughout we assume that X, Y, S, and R are as stated above.

For $T \in B(X)$, let $\mathcal{N}(T)$ denote the null space of T, and let $\mathcal{R}(T)$ denote the range of T.

1. Spectrum

Let A and B be elements of a ring with unit I. We recall some notation: $A \circ B = A + B - AB$; $I - (A \circ B) = (I - A)(I - B)$. When $A \circ B = B \circ A = 0$, then B is the unique element with this property. In this case we write $B = A^q$. Thus, $(I - A)(I - A^q) = (I - A^q)(I - A) = I$, and so $(I - A)^{-1} = I - A^q$.

We have the following known basic computation (which holds in a ring with unit). Of course, the computation holds with the roles of R and S reversed.
Proposition 1 (The basic computation). For any $W \in B(X)$, let

$$V = S(W - I)R \in B(Y).$$

1. $(SR) \circ V = S((RS) \circ W)R$; and
2. $V \circ (SR) = S(W \circ (RS))R$.

We verify (1):

Suppose that $I - RS$ is invertible in $B(X)$, and set $W = (RS)^t \in B(X)$. Thus as remarked above, $(RS) \circ W = W \circ (RS) = 0$. Define $V \in B(Y)$ as in Proposition 1, so by that result, $(SR) \circ V = V \circ (SR) = 0$. Therefore $V = (SR)^t$, and $I - SR$ is invertible in $B(Y)$. From this it follows that:

$$\sigma(SR) \setminus \{0\} = \sigma(RS) \setminus \{0\}.$$

We will show later in this section that similar equalities hold for all the usual parts of the spectrum. Note that Proposition 1 also implies:

$I - SR$ has a left (right) inverse if and only if $I - RS$ has a left (right) inverse.

Proposition 2.

1. $S(N(I - RS)) = N(I - SR)$;
2. $N(S) \cap N(I - RS) = \{0\}$.

Proof. Statement (2) clearly holds. Assume $x \in N(I - RS)$, so $RSx = x$. Then $SRSx = Sx$, and thus, $S(N(I - RS)) \subseteq N(I - SR)$. To verify the opposite inclusion, suppose $y \in N(I - SR)$. Arguing as above, we have

$$R(N(I - SR)) \subseteq N(I - RS).$$

Therefore, $Ry \in N(I - RS)$. Then $y = SRy \in S(N(I - RS))$. This proves (1).

We use σ_p, σ_ap, σ_r, and σ_c to denote the point, approximate point, residual, and continuous spectrum, respectively.

Theorem 3.

1. $\sigma(SR) \setminus \{0\} = \sigma(RS) \setminus \{0\}$;
2. $\sigma_p(RS) \setminus \{0\} = \sigma_p(SR) \setminus \{0\}$;
3. $\sigma_ap(RS) \setminus \{0\} = \sigma_ap(SR) \setminus \{0\}$;
4. $\sigma_r(RS) \setminus \{0\} = \sigma_r(SR) \setminus \{0\}$;
5. $\sigma_c(RS) \setminus \{0\} = \sigma_c(SR) \setminus \{0\}$.

Proof. As noted previously, (1) follows from Proposition 1. Also, (2) is an immediate corollary of Proposition 2 (1).

Now assume $\lambda \in \sigma_ap(RS) \setminus \{0\}$. This means there exists $\{x_n\} \subseteq X$, $\|x_n\| = 1$ for all n, and $\|(\lambda - RS)x_n\| \to 0$. Therefore, $\|(\lambda - SR)(Sx_n)\| = \|S(\lambda - RS)x_n\| \to 0$. Also, $\|Sx_n\|$, $n \geq 1$, is bounded away from zero, for if not, $\|Sx_n\| \to 0$ for some subsequence $\{x_{n_k}\}$ of $\{x_n\}$. But then,

$$|\lambda| = |\lambda||x_n| \leq \|(\lambda - RS)x_n\| + \|RSx_n\| \to 0,$$

a contradiction. This proves $\lambda \in \sigma_ap(SR)$.

(4): $\lambda \in \sigma_r(RS) \setminus \{0\}$ means exactly that $\lambda \neq 0$, $\lambda \notin \sigma_p(RS)$, and $\mathcal{R}(\lambda - RS)^- \neq X$. We use T' to denote the adjoint of an operator T. We have $\mathcal{N}(\lambda - S'T') = \mathcal{N}(\lambda - (SR)^t) \neq \{0\}$. By Proposition 2 (1), $\mathcal{N}(\lambda - (SR)^t) = \mathcal{N}(\lambda - R'S') \neq \{0\}$. Therefore $\mathcal{N}(\lambda - SR)^- \neq Y$, and so $\lambda \in \sigma_r(SR)$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Note here that \(\operatorname{LRw} \) is well-defined.

2. Closed range

Recall that \(I - RS \) has pseudoinverse (or generalized inverse) \(I - W \) means that
\[
\]
The existence of a pseudoinverse for \(I - RS \) implies that \(\mathcal{R}(I - RS) \) is closed (and more) [TL, Theorem 12.9, p. 251].

Theorem 4. \(I - RS \) has a pseudoinverse if and only if \(I - SR \) has a pseudoinverse.

Proof. Assume \(I - RS \) has pseudoinverse \(I - W \) (as above). Let \(V = S(W - I)R \).
From Proposition 1 we have
\[
(I - SR)(I - V) = I - (SR) \circ V = I + S[-(RS) \circ W]R
\]
Thus,
\[
(I - SR)(I - V)(I - SR)
= I + S[(I - RS)(I - W)]R - SR - SR - S[(I - RS)(I - W)]RSR + SRSR
= I - 2SR + SRSR + S[(I - RS)(I - W)(I - RS)]R
= I - 2SR + SRSR + S[I - RS]R = I - SR.
\]

Note that the argument in the proof of Theorem 4 is completely algebraic, so the result holds in any ring with unit.

Let \(T \in B(X) \). Equip \(X/\mathcal{N}(T) \) with the usual quotient norm. A standard condition which is equivalent to \(\mathcal{R}(T) \) being closed is:
there exists a bounded linear operator \(M: \mathcal{R}(T) \to X/\mathcal{N}(T) \) such that
\[
MTx = x + \mathcal{N}(T) \quad \text{for all } x \in X.
\]

Theorem 5. \(\mathcal{R}(I - RS) \) is closed if and only if \(\mathcal{R}(I - SR) \) is closed.

Proof. Assume \(I - RS \) has closed range \(Z \). Write \((I - RS)^{\sim}: X/\mathcal{N}(I - RS) \to Z \) where \((I - RS)^{\sim}(x + \mathcal{N}(I - RS)) = (I - RS)x \). There exists a bounded linear operator
\[
L: Z \to X/\mathcal{N}(I - RS)
\]
such that for all \(x \in X \),
\[
L(I - RS)^{\sim}(x + \mathcal{N}(I - RS)) = x + \mathcal{N}(I - RS).
\]
Define \(\bar{S}: X/\mathcal{N}(I - RS) \to Y/\mathcal{N}(I - SR) \) by
\[
\bar{S}(x + \mathcal{N}(I - RS)) = Sx + \mathcal{N}(I - SR).
\]
Note that \(\bar{S} \) is well-defined by Proposition 2. Also, it is straightforward to check that \(\bar{S} \) is continuous.

Now define \(M: \mathcal{R}(I - SR) \to Y/\mathcal{N}(I - SR) \) by \(M(w) = w + \mathcal{N}(I - SR) + \bar{S}LRw \).
Note here that \(w = y - SRy \) for some \(y \), so \(Rw = (I - RS)y \in \mathcal{R}(I - RS) \). Thus, \(LRw \) is well-defined.
Also, since by definition M is an algebraic combination of continuous maps, M is continuous. Finally,
\[
M(y - SRy) = y - SRy + N(I - SR) + \tilde{S}LR(y - SRy)
\]
\[
= y - SRy + N(I - SR) + \tilde{S}Ry = y + N(I - SR).
\]
Therefore $R(I - SR)$ is closed.

3. Fredholm properties

An operator $T \in B(X)$ is semi-Fredholm if $R(T)$ is closed and either $\text{nul}(T) = \dim(V(T))$ or $\text{nul}(T')$ is finite (as before, T' is the adjoint of T); see [CPY, 1.3 and Chapter 4]. We use the notation:
\[
\Phi^+ = \{ T \in B(X) : R(T) \text{ is closed and } \text{nul}(T) < \infty \};
\]
\[
\Phi^- = \{ T \in B(X) : R(T) \text{ is closed and } \text{nul}(T') < \infty \};
\]
\[
\Phi = \Phi^+ \cap \Phi^-.
\]
Recall, when T is semi-Fredholm, then $\text{ind}(T) = \text{nul}(T) - \text{nul}(T')$.

Theorem 6. $I - RS \in \Phi (\Phi^+, \Phi^-)$ if and only if $I - SR \in \Phi (\Phi^+, \Phi^-)$. Furthermore, when $I - RS \in \Phi$, then $\text{ind}(I - RS) = \text{ind}(I - SR)$.

Proof. The first statement follows directly from Theorem 5 and Proposition 2. Also, when $I - RS \in \Phi$, Proposition 2 implies that $\text{nul}(I - RS) = \text{nul}(I - SR)$ and $\text{nul}(I - RS)' = \text{nul}(I - S'R') = \text{nul}(I - R'S') = \text{nul}(I - (RS)')$. Thus, $\text{ind}(I - RS) = \text{ind}(I - SR)$.

4. Functional calculus

In this section we derive a useful relationship between the holomorphic functional calculi of RS and SR.

Theorem 7. Let $g(\lambda)$ be a holomorphic function on some open set U such that $\sigma(SR) \cup \{0\} \subseteq U$. Let $f(\lambda) = \lambda g(\lambda)$. Then $f(SR) = Sg(RS)R$.

Proof. Set $\Gamma = \sigma(SR) \cup \{0\}$, and let γ be a cycle which is contained in $U \setminus \Gamma$ with $\text{ind}_\gamma(z) = 1$ for all $z \in \Gamma$, and $\text{ind}_\gamma(z) = 0$ for all $z \notin U$. For $\lambda \neq 0$, we have
\[
\lambda^{-1}[I - (\lambda^{-1}SR)^q] = (\lambda - SR)^{-1}.
\]
Also, by Proposition 1 with $W = (\lambda^{-1}RS)^q$,
\[
(\lambda^{-1}SR)^q = -\lambda^{-1}S[I - (\lambda^{-1}RS)^q]R.
\]
Therefore,
\[f(SR) = (2\pi i)^{-1} \int f(\lambda)(\lambda - SR)^{-1} d\lambda \]
\[= (2\pi i)^{-1} \left[\int g(\lambda)\lambda^{-1}S[I - (\lambda^{-1}RS)^q]R d\lambda \right] \]
\[= (2\pi i)^{-1} \left[0 + \int g(\lambda)\lambda^{-1}S[I - (\lambda^{-1}RS)^q]R d\lambda \right] \]
\[= S \left[(2\pi i)^{-1} \int g(\lambda)(\lambda - RS)^{-1} d\lambda \right] R = Sg(RS)R \quad \text{(by (1))}. \]

Corollary 8. Let \(f \) and \(g \) be as above. Set \(R_1 = g(RS)R \). Then \(f(SR) = SR_1 \), and since \(f(\lambda) = g(\lambda)\lambda \), \(f(RS) = g(RS)RS = R_1S \).

Therefore the results of this paper apply to \(f(SR) \) and \(f(RS) \).

5. **Poles**

Let \(\lambda_0 \neq 0 \) be an isolated point of \(\sigma(RS) \). We adopt the notation and terminology in [TL, pp. 328–331]. In particular, for \(n \neq 1 \), let
\[f_{-n}(\lambda) = \begin{cases} (\lambda - \lambda_0)^{-n} & \text{if } |\lambda - \lambda_0| < r; \\ 0 & \text{if } |\lambda - \lambda_0| > 2r. \end{cases} \]
(Here \(r > 0 \) is chosen so that \((\sigma(RS) \cup \{0\}) \setminus \{\lambda_0\} \subseteq \{\lambda: |\lambda - \lambda_0| > 2r\}. \)
Let \(B_0(RS) = f_{-1}(RS) \), and note that \(B_1(RS) \) is the spectral projection corresponding to the spectral set \(\{\lambda_0\} \). We use the same notation relative to \(SR; B_n(SR) = f_{-n}(SR) \). Define
\[h(\lambda) = \begin{cases} \lambda^{-1} & \text{if } |\lambda - \lambda_0| < r; \\ 0 & \text{if } |\lambda - \lambda_0| > 2r. \end{cases} \]

We have \(f_{-n}(\lambda) = (\lambda f_{-n}(\lambda)h(\lambda)) \), which gives:
1. \(B_0(SR) = SRB_0(SR)h(SR) \); and
2. \(B_1(SR) = S[B_1(RS)h(RS)]R \).
((2) follows by applying Theorem 7.)

By definition \(\lambda_0 \) is a pole of order \(p \) of the resolvent of \(RS \) if \(B_p(RS) \neq 0 \), and \(B_n(RS) = 0 \) for all \(n > p \) [TL, p. 330].

Theorem 9. An isolated point \(\lambda_0 \neq 0 \) of \(\sigma(RS) \) is a pole of order \(p \) of the resolvent of \(RS \) if and only if \(\lambda_0 \) is a pole of order \(p \) of the resolvent of \(SR \). Furthermore, \(\mathcal{R}(B_1(RS)) \) is finite dimensional if and only if \(\mathcal{R}(B_1(SR)) \) is finite dimensional.

Proof. We use the notation introduced above. Assume \(B_n(RS) = 0 \) for some \(n > 1 \). By Theorem 7 with \(g(\lambda) = f_{-n}(\lambda), f(\lambda) = \lambda g(\lambda) \), it follows that \(SRB_n(SR) = S[B_n(RS)]R = 0 \). By (1) it follows that \(B_n(SR) = 0 \). This argument establishes that \(B_n(RS) = 0 \) if and only if \(B_n(SR) = 0 \). The statement of the theorem concerning poles follows from this.

The second statement of the theorem follows from (2), since if \(\mathcal{R}(B_1(RS)) \) is finite dimensional, then \(B_1(SR) = S[B_1(RS)h(RS)]R \) has finite dimensional range.
Recall that the smallest integer \(p \geq 0 \) such that \(\mathcal{N}(T^p) = \mathcal{N}(T^{p+1}) \) is called the ascent of the operator \(T \) (the ascent of \(T \) is infinite if \(\mathcal{N}(T^n) \neq \mathcal{N}(T^{n+1}) \) for all \(n \geq 0 \) [TL, Section V6]. The property that \(\lambda_0 - T \) has finite ascent is closely connected to \(\lambda_0 \) being a pole of the resolvent of \(T \); see [TL, Section V10].

Let \(n \geq 0 \) be an integer. There exists \(U_n \) such that
\[
(I - SR)^{n+1} = I - SU_n; \quad (I - RS)^{n+1} = I - U_nS.
\]

In fact, by direct computation, \(U_n = \sum_{k=1}^{n+1} (-1)^{k-1} \binom{n+1}{k} R(SR)^{k-1} \) works.

Proposition 10. \(I - RS \) has finite ascent \(p \) if and only if \(I - SR \) has finite ascent \(p \).

Proof. Suppose, for some \(n \geq 0 \), \(\mathcal{N}((I - RS)^n) = \mathcal{N}((I - RS)^{n+1}) \). By the existence of \(U_k \) as indicated above, Proposition 2 applies to \((I - SR)^{k+1} \) for all \(k \geq 0 \). Thus,
\[
\mathcal{N}((I - SR)^{n+1}) = \mathcal{N}(I - SU_n) = S(\mathcal{N}(I - U_nS)) = S(\mathcal{N}((I - RS)^{n+1}))
\]
\[
= S(\mathcal{N}((I - RS)^n)) = \mathcal{N}((I - SR)^n).
\]

This implies that \(I - RS \) has ascent \(p \).

6. Examples, applications

In this section we look at several situations where the results of the previous sections apply.

Example 11. Assume that the Banach space \(X \) is continuously embedded as a subspace of a Banach space \(Y \). Assume that \(T \in B(X) \) has an extension \(\mathcal{T} \in B(Y) \). In [B1] operator properties of \(T \) and \(\mathcal{T} \) are studied with the hypothesis that \(\mathcal{T}(Y) \subseteq X \). All of the main results of [B1, §2] (and more!) can be derived from results in this paper. For let \(S: X \to Y \) be the continuous embedding, \(S(x) = x \). Let \(R: Y \to X \) be the bounded operator, \(R(y) = \mathcal{T}(y) \in X \). Then \(T = RS \) and \(\mathcal{T} = SR \). Therefore in this situation the results of the previous sections apply to \(T \) and \(\mathcal{T} \).

Example 12. Let \(H \) be a Hilbert space. Assume \(S: X \to H \) and \(R: H \to X \) have the special property that \(SR \) is selfadjoint. Then \(T = RS \) has many of the operator properties of a selfadjoint operator. Exactly this situation is studied in [B2].

In particular, suppose \(X = H \), \(R \geq 0 \), and \(S = S^* \). Then an operator of the form \(SR \) is called symmetrizable. The operator \(SR \) has many operator properties in common with the selfadjoint operator \(R^2SR^2 \).

Example 13. Let \((\Omega, \mu)\) be a \(\sigma \)-finite measure space. Let \(K(x, t) \) be a kernel on \(\Omega \times \Omega \) with the property
\[
k(x) = \operatorname{ess sup}_{t \in \Omega} |K(x, t)| \in L^1(\mu).
\]
The linear integral operator
\[
T_K(f)(x) = \int_{\Omega} K(x, t)f(t) \, d\mu(t), \quad f \in L^1(\mu),
\]
is an operator in \(B(L^1(\mu)) \). In this case \(T_K \) is a Hille-Tamarkin operator, \(T_K \in H_{11} \); see [J, Sections 11.3 and 11.5].
We may assume that \(k(x) \) is everywhere defined and nonnegative. Define
\[
J(x, t) = \begin{cases} k(x)^{-\frac{1}{2}}K(x, t) & \text{if } k(x) > 0; \\ 0 & \text{if } k(x) = 0. \end{cases}
\]
Since
\[
\text{ess sup}_{t \in \Omega} |J(x, t)|^2 = k(x) \in L^1(\mu),
\]
the integral operator, \(T_J: L^1 \rightarrow L^2 \), is in the Hille-Tamarkin class \(H_{21} \). Also, define
\[
H(x, t) = J(x, t)k(t)^{\frac{1}{2}}.
\]
Since \(|H(x, t)|^2 \leq k(x)k(t) \), it follows that \(T_H \) is a Hilbert-Schmidt operator on \(L^2(\mu) \).

Now consider the operators \(S: L^2 \rightarrow L^1 \) and \(R: L^1 \rightarrow L^2 \) given by
\[
S(f) = k^{\frac{1}{2}}f \quad (f \in L^2); \quad R(g) = T_J(g) \quad (g \in L^1).
\]
Then \(SR = T_K \) and \(RS = T_H \). We summarize:

Theorem 14. Let \(T_K: L^1 \rightarrow L^1 \) be a Hille-Tamarkin operator in class \(H_{11} \). Then there exist bounded operators \(S: L^2 \rightarrow L^1 \) and \(R: L^1 \rightarrow L^2 \) such that \(T_K = SR \) and \(RS \) is a Hilbert-Schmidt operator.

Corollary 15. Let \(T_K: L^1 \rightarrow L^1 \) be a Hille-Tamarkin operator in class \(H_{11} \). Then \(T_K^2 \) is compact, and the nonzero eigenvalues of \(T_K \) (counted according to multiplicities) form a square summable sequence.

Proof. Let \(T_K = SR \) with \(RS \) Hilbert-Schmidt. Then \(T_K^2 = S(RS)R \), so \(T_K^2 \) is compact. Also, the sequence of nonzero eigenvalues (counted according to multiplicities) of \(T_K \) and \(RS \) are the same by Proposition 2 and Theorem 3. This sequence is square summable by [Rg, Corollary 2.3.6, p. 89].

References

Department of Mathematics, University of Oregon, Eugene, Oregon 97403

E-mail address: barnes@math.uoregon.edu