THE STABILITY RADIUS OF A QUASI-FREDHOLM OPERATOR

PAK WAI POON

(Communicated by Palle E. T. Jorgensen)

Abstract. We extend the technique used by Kordula and M"uller to show that the stability radius of a quasi-Fredholm operator T is the limit of $\gamma(T^n)^{1/n}$ as $n \to \infty$. If 0 is an isolated point of the Apostol spectrum $\sigma_\gamma(T)$, then the above limit is non-zero if and only if T is quasi-Fredholm.

Let $L(X)$ be the set of all bounded linear operators on a complex Banach space X. For any $T \in L(X)$, we denote the null space and range of T by $N(T)$ and $R(T)$ respectively. The Apostol spectrum of T is defined to be the set

$$\sigma_\gamma(T) = \{ \mu \in \mathbb{C} : \lim_{\lambda \to \mu} \gamma(T - \lambda I) = 0 \},$$

where $\gamma(T)$ is the reduced minimum modulus of T, that is,

$$\gamma(T) = \begin{cases} \inf \{ \|Tx\| : x \in X, d(x, N(T)) = 1 \} & \text{if } T \neq 0, \\ \infty & \text{if } T = 0. \end{cases}$$

The Apostol spectrum was first defined in this form by Apostol in [1] for operators on a Hilbert space. Its complement in \mathbb{C} is usually called the semi-regular region of T and is denoted by $\rho_\gamma(T)$. T is semi-regular (or s-regular) if $0 \in \rho_\gamma(T)$. Properties of the Apostol spectrum for operators on a Banach space can be found in [10, 11].

The stability radius of T is defined as the distance

$$\delta(T) = d(0, \sigma_\gamma(T) \setminus \{0\}).$$

It is the radius of the largest punctured open disc centred at 0 in which $T - \lambda I$ is semi-regular. When T is semi-regular, it is shown in [5] that

$$\delta(T) = \frac{\gamma(T^n)^{1/n}}{n \to \infty}.$$

In the special case when T is bounded below or surjective, $\delta(T)$ is also the distance from 0 to the approximate point spectrum and to the surjectivity spectrum respectively. When 0 is an isolated point of $\sigma_\gamma(T)$, the formula (3) still applies to certain classes of operators. It includes the cases when T is Fredholm [3], semi-Fredholm [14], essentially s-regular [5], or chain finite (T has finite ascent and descent) [2].

Received by the editors June 21, 1996 and, in revised form, September 23, 1996.

1991 Mathematics Subject Classification. Primary 47A55, 47A10, 47A53.

Key words and phrases. Stability radius, Apostol spectrum, semi-regular, quasi-Fredholm operators, ascent, descent.

The results in this paper form a part of the author’s research for the degree of Ph. D. at the University of Melbourne, 1996, under the supervision of J. J. Koliha.

©1998 American Mathematical Society
An operator T is regular (or of Saphar type) if it is both relatively regular and semi-regular. The stability problem concerning regular operators is studied in [13].

Definition. An operator $T \in L(X)$ has topological uniform descent d (where d is a nonnegative integer) if $N(T^{n}) + R(T) = N(T^{d}) + R(T)$ is a closed subspace for all $n \geq d$ (Grabiner [4]). An operator T is quasi-Fredholm if T has topological uniform descent d for some integer d and $R(T^{n})$ is closed for all $n \geq d$.

Quasi-Fredholm operators were first defined on a Hilbert space by Labrousse [6] and on a Banach space by Mbekhta and Müller [9]. The definition used here is different from but equivalent to the one given in [9]. The class of quasi-Fredholm operators is well researched for the Hilbert space case [6, 7]. In [6], it was shown that an operator on a Hilbert space is quasi-Fredholm if and only if it has a Kato decomposition. A characterization of quasi-Fredholm operators in a Banach space is examined in [12]. Two pertinent properties of quasi-Fredholm operators are proved in Theorem 7 and Corollary 15 below.

In the present paper, the stability radius problem of a quasi-Fredholm operator is examined. It was shown in [1, Prop. 3.3] that the stability radius formula (3) holds for a Hilbert space operator T if only if T has a Kato decomposition described in [6], which is of course equivalent to T being quasi-Fredholm. The main aim of this paper is to extend the result to Banach space operators. It turns out that the technique used by Kordula and Müller in [5] can be extended to solve the stability radius problem for quasi-Fredholm operators. The main result of this paper is the following theorem, which is a consequence of Theorem 10 and Corollary 15.

Theorem. If T is a quasi-Fredholm operator, then the stability radius of T is equal to $\lim_{n \to \infty} \gamma(T^{n})^{1/n}$. Moreover, if 0 is an isolated point of the Apostol spectrum of an arbitrary operator T, then $\lim_{n \to \infty} \gamma(T^{n})^{1/n}$ always exists. This limit is non-zero if and only if T is quasi-Fredholm.

If M, N are closed T-invariant subspaces with $N \subseteq M$, then we denote the map induced by T on the quotient M/N by $T_{M/N}$. More precisely, $T_{M/N}$ is the map $x + N \mapsto Tx + N$. We also denote the restriction of T to M by T_{M}. The ascent and descent of T will be denoted by $\text{asc}(T)$ and $\text{des}(T)$ respectively. The hyperkernel $\bigcup_{n=1}^{\infty} N(T^{n})$ and hyperrange $\bigcap_{n=1}^{\infty} R(T^{n})$ of T are denoted by $N(T^{\infty})$ and $R(T^{\infty})$ respectively. We first prove some properties of the reduced minimum modulus.

Lemma 1. Let M be a closed T-invariant subspace.

(i) If $T_{X/M}$ is injective, then $\gamma(T_{M}) \geq \gamma(T)$.

(ii) If T_{M} has dense range, then $\gamma(T_{X/M}) \geq \gamma(T)$.

Proof. (i) The hypothesis shows that $T^{-1}M \subseteq M$. In particular, $N(T) \subseteq M$. Hence $N(T_{M}) = N(T) \cap M = N(T)$.

It is clear from the definition of the minimum modulus that $\gamma(T_{M}) \geq \gamma(T)$.

(ii) If $\gamma(T_{X/M}) = \infty$, the result is trivial. If $\gamma > \gamma(T_{X/M})$, we can find $x \in X$ such that $d(x + M, N(T_{X/M})) = 1$ and $\|T_{X/M}(x + M)\| < \gamma$. So

$$d(x, T^{-1}M) = 1 \quad \text{and} \quad d(Tx, M) < \gamma.$$

Since TM is dense in M, we can find $m \in M$ such that $\|T(x + m)\| < \gamma$. Note that $N(T) \subseteq T^{-1}M$. As $TM \subseteq M$, we also have $M \subseteq T^{-1}M$. Hence

$$\gamma(T) \leq \frac{\|T(x + m)\|}{d(x + m, N(T))} \leq \frac{\|T(x + m)\|}{d(x + m, T^{-1}M)} = \frac{\|T(x + m)\|}{d(x, T^{-1}M)} < \gamma.$$
Considering all \(\gamma > \gamma(T_{X/M}) \), we conclude that \(\gamma(T_{X/M}) \geq \gamma(T) \).

\[\blacktriangleleft \]

Lemma 2. Suppose \(\text{asc}(T) = d \), i.e. \(N(T^d) = N(T^n) \) for all \(n \geq d \). Let \(\hat{T} \) be the map induced by \(T \) on the quotient \(X/N(T^d) \); then

\[
\begin{align*}
\liminf_{n \to \infty} \gamma(T^n)^{1/n} &= \liminf_{n \to \infty} (\hat{T}^n)^{1/n}, \\
\limsup_{n \to \infty} \gamma(T^n)^{1/n} &= \limsup_{n \to \infty} (\hat{T}^n)^{1/n}.
\end{align*}
\]

Moreover, \(\limsup_{n \to \infty} \gamma(T^n)^{1/n} > 0 \iff \hat{T} \) is bounded below \(\iff \lim_{n \to \infty} \gamma(T^n)^{1/n} > 0 \).

Proof. Let us first assume that \(T^d \neq 0 \). Since \(\text{asc}(T) = d \), we have \(T^{-1}N(T^d) = N(T^d) \) and \(\hat{T} \) is injective. Taking any \(x \in X \), we have

\[
\|T^n x\| \geq d(T^n x, N(T^d)) \geq \|T^n\|^{-1}\|T^{n+d} x\|.
\]

The first inequality is obvious. The second follows from the relation

\[
\|T^{n+d} x\| = \|T^d(T^n x + z)\| \leq \|T^d\|\|T^n x + z\|,
\]

true for all \(z \in N(T^d) \). Write \(x + N(T^d) \) as \(\hat{x} \); then for \(n \geq d \), we have

\[
\|\hat{T}^n \hat{x}\| = d(T^n x, N(T^d)), \quad \|\hat{x}\| = d(x, N(T^d)) = d(x, N(T^n)) = d(x, N(T^{n+d})).
\]

We deduce from (5) that \(\gamma(T^n) \geq \gamma(\hat{T}^n) \geq \|T^n\|^{-1}\gamma(T^{n+d}) \) by taking infima over all \(x \) with \(\|\hat{x}\| = 1 \); (4) then follows by taking limits. When \(T^d = 0, \hat{T} = 0 \) and all limits in (4) are infinite. To establish the last statement, we proceed as follows:

(a) If \(\limsup_{n \to \infty} \gamma(T^n)^{1/n} > 0 \), then it follows from (4) that \(\gamma(\hat{T}^k) > 0 \) for some \(k \). Therefore \(R(\hat{T}^k) \) is a closed subspace. Since \(\hat{T} \) is injective, so is \(\hat{T}^k \). Thus \(\hat{T}^k \) is injective and has closed range. So \(\hat{T}^k \) is bounded below. Hence the Banach space adjoints of \(\hat{T}^k \) and \(\hat{T} \) are surjective. So \(\hat{T} \) is bounded below.

(b) If \(\hat{T} \) is bounded below, then the limit \(\lim_{n \to \infty} \gamma(\hat{T}^n)^{1/n} \) exists and is positive \cite{8}. By (4), the same is true for \(\lim_{n \to \infty} \gamma(T^n)^{1/n} \).

(c) If \(\lim_{n \to \infty} \gamma(T^n)^{1/n} > 0 \), then obviously \(\limsup_{n \to \infty} \gamma(T^n)^{1/n} > 0 \).

\[\blacktriangleleft \]

By applying the lemma to \(T^* \) instead of \(T \) and using Banach space duality, one can readily verify the following lemma.

Lemma 3. Suppose \(\overline{R(T^n)} = \overline{R(T^d)} \) for all \(n \geq d \). Let \(\hat{T} \) be the restriction of \(T \) to \(\overline{R(T^d)} \); then

\[
\begin{align*}
\liminf_{n \to \infty} \gamma(T^n)^{1/n} &= \liminf_{n \to \infty} (\hat{T}^n)^{1/n}, \\
\limsup_{n \to \infty} \gamma(T^n)^{1/n} &= \limsup_{n \to \infty} (\hat{T}^n)^{1/n}.
\end{align*}
\]

Moreover, \(\limsup_{n \to \infty} \gamma(T^n)^{1/n} > 0 \iff \hat{T} \) is surjective \(\iff \lim_{n \to \infty} \gamma(T^n)^{1/n} > 0 \).

The following lemma is a refinement of Kordula and Müller \cite[Lemma 2]{5}. The technique used in the proof is adapted from that paper.

Lemma 4. Let \(N \subseteq M \) be closed \(T \)-invariant subspaces of \(X \) such that \(T_{X/M} \) is bounded below, \(T_N \) is surjective and \(T^0 M \subseteq N \). Then:

(i) \(N = R(T^n) \cap M = T^n M \) for each \(n \geq d \).

(ii) \(M = N(T^n) + N = T^{-n}N \) for each \(n \geq d \).
(iii) \(\text{des}(T_M) \leq d \), \(R(T^d_M) = N \) and
\[
\lim_{n \to \infty} \gamma(T^n_M)^{1/n} = \lim_{n \to \infty} \gamma(T^n_N)^{1/n}.
\]
(iv) \(\text{asc}(T_{X/N}) \leq d \), \(N(T^d_{X/N}) = M/N \) and
\[
\lim_{n \to \infty} \gamma(T^n_{X/N})^{1/n} = \lim_{n \to \infty} \gamma(T^n_{X/M})^{1/n}.
\]
(v) \(\lim_{n \to \infty} \gamma(T^n)^{1/n} = \min \{ \lim_{n \to \infty} \gamma(T^n_M)^{1/n}, \lim_{n \to \infty} \gamma(T^n_N)^{1/n} \} \).

Proof. Consider any integer \(n \geq d \).

(i) Since \(T_{X/M} \) is injective, we have \(T^{-1}M = M \). So \(T^nM = T^nT^{-n}M = M \cap R(T^n) \). From the fact that \(T_N \) is surjective, \(N \subseteq M \) and \(T^dM \subseteq N \), we have the inclusions \(N \subseteq T^nN \subseteq T^nM \subseteq N \). This establishes (i).

(ii) Since \(T_N \) is surjective, we have \(T^{-n}N = T^{-n}T^nN = N(T^n) + N \). From the fact that \(T^nM \subseteq N \), \(N \subseteq M \) and \(T_{X/M} \) is injective, we have the inclusions \(M \subseteq T^{-n}N \subseteq T^{-n}M \subseteq M \). This shows (ii).

(iii) It follows from (i) that \(\text{des}(T_M) \leq d \), \(R(T^d_M) = N \). Using the notation in Lemma 3, we have \((T_M)^{\sim} = T_N \), a surjective operator by hypothesis. The rest of (iii) follows from an application of Lemma 3 to the operator \(T_M \).

(iv) It follows from (ii) that \(N(T^n_{X/N}) = T^{-n}N/N = M/N \) for all \(n \geq d \). So \(\text{asc}(T_{X/N}) \leq d \) and \(N(T^n_{X/N}) = M/N \). Using the notation in Lemma 2, we can identify \((T_{X/N})^{\sim} \) with \(T_{X/M} \), which is bounded below. The rest of (iv) follows from an application of Lemma 2 to the operator \(T_{X/N} \).

(v) From (iii), (iv) and Lemma 1,
\[
\limsup_{n \to \infty} \gamma(T^n)^{1/n} \leq \min \{ \lim_{n \to \infty} \gamma(T^n_M)^{1/n}, \lim_{n \to \infty} \gamma(T^n_N)^{1/n} \}.
\]

To prove the reverse inequality, we adopt the approach of [5, Lemma 2]. We assume that \(M \neq X \) and \(N \neq 0 \); otherwise, (v) follows from (iii) and (iv) directly. This means that \(T_N, T_{X/M} \) are non-zero operators which are either surjective or bounded below. Hence, both \(\gamma(T_N^n), \gamma(T_{X/M}^n) \) are finite and positive for all \(n \). Since (v) holds if and only if it holds for some non-zero multiple of \(T \), we can also assume without loss of generality that \(\|T\| = 1 \). For each \(i \geq d \), let \(\gamma^{-1}_i \) be the maximum of \(\gamma(T_N^n)^{-1} \) and \(\gamma(T_{X/M}^n)^{-1} \). We also let \(t > 1 \) and \(n \geq d \), and we let \(x \) be an arbitrary unit vector in \(R(T^n) \). For each \(i = d, \ldots, n \), it is possible to pick \(x_i \in T^{-i}[x + M] \) such that \(\|x_i\| \leq td(x_i, M) \). Since \(d(x_i, M) \leq \gamma(T_{X/M}^i)^{-1}d(x, M) \),
\[
\|x_i\| \leq t\gamma(T_{X/M}^i)^{-1}\|x\| \leq t\gamma^{-1}_i.
\]

Let \(m_i = Tx_{i+1} - x_i \) for \(i = d, \ldots, n - 1 \); then
\[
\|m_i\| \leq \|Tx_{i+1}\| + \|x_i\| \leq \|x_{i+1}\| + \|x_i\| \leq t(\gamma^{-1}_{i+1} + \gamma^{-1}_i),
\]
and \(\sum_{i=d}^{n-1} T^i m_i + T^d x_d - x = T^nx_n - x \). It is clear from the definition of \(x_i \) that \(T^nm_i \in M \). So \(m_i \in T^{-M} \subseteq M \). If \(i \geq d \), then \(T^d m_i \in R(T^d) \cap M = N \) by (i). As \(T_N \) is surjective, there exists \(u_i \in N \) such that \(T^{d-i} m_i = T^{n-i}u_i \) and \(\|u_i\| \leq td(u_i, N(T^{n-i}M)) \). Therefore,
\[
\|u_i\| \leq t\gamma(T_N^{n-i})^{-1}\|T^{d-i} m_i\| \leq t\gamma^{-1}_n \|m_i\| \leq t^2\gamma^{-1}_{n-i} (\gamma^{-1}_i + \gamma^{-1}_i).
\]
It is easy to verify that \(T' m_i = T^n u_i \). Let \(m = T^d x_d - x \). Since \(x \in R(T^n) \), we have \(m \in R(T^d) \cap M = N \). We can pick \(u \in N \) with \(m = T^n u \), \(\|u\| \leq t d(u, N(T^n)) \),

\[
\|u\| \leq t \gamma(T^n)^{-1} \|m\| \leq t \gamma^{-1} \|m\| \leq t^2 \gamma^{-1}(\gamma_d^{-1} + 1).
\]

Let \(z = x_n - \sum_{i=1}^{n-1} u_i - u \). We now have

\[
T^n z = T^n x_n - \sum_{i=1}^{n-1} T^i m_i - (T^d x_d - x) = x,
\]

\[
d(z, N(T^n)) \leq \|z\| \leq C \left[\gamma_n^{-1} + \sum_{i=d}^{n-1} \gamma_{n-i+d}(\gamma_{i+1}^{-1} + \gamma_i^{-1}) + \gamma_n^{-1}(\gamma_d^{-1} + 1) \right],
\]

where \(C \) is the constant \(\max\{t, t^2\} \), which is independent of \(n \) and \(x \). Since \(x \) is an arbitrary unit vector in \(R(T^n) \), we have

\[
\gamma(T^n)^{-1} \leq C \left[\gamma_n^{-1} + \sum_{i=d}^{n-1} \gamma_{n-i+d}(\gamma_{i+1}^{-1} + \gamma_i^{-1}) + \gamma_n^{-1}(\gamma_d^{-1} + 1) \right].
\]

Suppose \(0 < \gamma < \min\{ \lim_{n \to \infty} \gamma(T^n)^{1/n}, \lim_{n \to \infty} \gamma(T^n)^{1/n} \} \); then for large enough \(i \), say \(i \geq n_0 \), we have \(\gamma_i^{-1} \geq \gamma^{-1} \). Let \(K = 1 + \max_{i \leq n_0} \gamma_i^{-1} \); then \(\gamma_i^{-1} \leq K \gamma^{-i} \) for all \(i \). It is a routine calculation that

\[
\gamma(T^n)^{-1} \leq CK^2 \left[\gamma^{-n} + \sum_{i=d}^{n-1} (\gamma^{-n-d-1} + \gamma^{-n-d} + \gamma^{-n-d} + \gamma^{-n}) \right]
\]

\[
\leq \gamma^{-n} CK^2(3 + 2n - 2d) \max\{1, \gamma^{-d} \gamma^{-d-1}\}.
\]

Taking limits, we have \(\lim_{n \to \infty} \gamma(T^n)^{1/n} \geq \gamma \). By considering all possible \(\gamma \), we have

\[
\lim_{n \to \infty} \gamma(T^n)^{1/n} \geq \min\{ \lim_{n \to \infty} \gamma(T^n)^{1/n}, \lim_{n \to \infty} \gamma(T^n)^{1/n} \}.
\]

Using the lemma, the stability radius formula can be proved via the Apostol representation for quasi-Fredholm operator [12]. For the sake of completeness, we give an independent proof of the result.

Lemma 5 ([5, Lemma 1]). \(T \) is \(s \)-regular if and only if there exists a closed subspace \(M \) with \(TM = M \) and \(T_{X/M} \) bounded below. We may choose \(M \) to be \(R(T^\infty) \).

Lemma 6. Let \(T \) be quasi-Fredholm; then \(\delta(T) > 0 \). If \(\Omega \) is the component of \(\rho_\gamma(T) \) containing \(\{ \lambda : 0 < |\lambda| < \delta(T) \} \) and \(d \) is the uniform descent of \(T \), then

\[
R[(T - \lambda I)^\infty] = R(T^\infty) + N(T^\infty) = R(T^\infty) + N(T^d)
\]

for all \(\lambda \in \Omega \).

Proof. See [4, Theorem 4.7], and note that \(T - \lambda I \) has closed range and uniform descent for \(n \geq 0 \) if and only if \(\lambda \in \rho_\gamma(T) \) [10, Corollaire 4.2 (iii)].

Theorem 7. \(T \) is a quasi-Fredholm operator if and only if there exist closed \(T \)-invariant subspaces \(M, N \) with \(N \subseteq M \) such that \(T_{X/M} \) is bounded below, \(T_N \) is surjective and \(T^d M \subseteq N \) for some nonnegative integer \(d \). We may take \(N = R(T^\infty) \) and \(M = N(T^d) + R(T^\infty) \), where \(d \) is the uniform descent of \(T \).
Proof. Suppose there are subspaces M, N with the required properties; then the requirements for Lemma 4 are satisfied. In particular, $N = R(T^n) \cap M$ and $M = N(T^n) + N$ for each $n \geq d$. As $T_{X/M}$ is bounded below, $R(T_{X/M})$ is closed. So is $R(T) + M$. Since
\[R(T) + M = R(T) + N(T^n) + N = R(T) + N(T^n) \] for all $n \geq d$,
T has topological uniform descent for $n \geq d$.

It remains to show that $R(T^n)$ is closed for all $n \geq d$. For any $n \geq d$,
\[M + R(T^n) = N(T^d) + N + R(T^n) = N(T^d) + R(T^n), \]
which is a closed subspace by [4, Theorem 3.2]. Clearly $M \cap R(T^n) = N$ is also a closed subspace. Now both M and $R(T^n)$ are paracompact [6, Prop. 2.1.4]. Using the Neubauer Lemma [6, Prop. 2.1.2], we deduce that $R(T^n)$ is closed. Hence T is quasi-Fredholm.

Conversely, assume T is quasi-Fredholm with uniform descent d. Take $N = R(T^\infty)$ and $M = N(T^d) + R(T^\infty)$. It is clear that M and N are T-invariant subspaces. It is also clear that $N \subseteq M$ and $T^d M \subseteq N$. Since $R(T^n)$ is closed for $n \geq d$ and $N = R(T^\infty)$, N is closed. Moreover, we have $T N = N$ [4, Theorem 3.4]. So T_N is surjective and $T^{-1} N = N + N(T^n)$ for all n. By Lemma 6, we have $M = N + N(T^n) = T^{-1} N$ for all $n \geq d$. It follows that M is closed and $T^{-1} M = M$. Hence, $T_{X/M}$ is injective. Also,
\[R(T) + M = R(T) + N + N(T^d) = R(T) + N(T^d), \]
which is a closed subspace by the definition of topological uniform descent. We conclude that $R(T_{X/M})$ is closed and hence $T_{X/M}$ is bounded below. \qed

Theorem 8. If $\text{des}(T) = d$ and $R(T^d)$ is closed, then the stability radius of T is given by $\delta(T) = \lim_{n \to \infty} \gamma(T^n)^{1/n}$.

Remark. We readily deduce from [4, Corollary 4.8 (c)] that $T - \lambda I$ is surjective for every $\lambda \in \Omega$, where Ω is the component of $\rho_s(T)$ defined in Lemma 6.

Proof. We assume that $T^d \neq 0$; otherwise both $\delta(T)$ and $\lim_{n \to \infty} \gamma(T^n)^{1/n}$ are infinite. Let $M = R(T^d) = R(T^\infty)$. It is then easy to verify that T_M is surjective and $T_{X/M}$ is nilpotent. By Lemma 3, there is positive real number δ such that
\[\delta = \lim_{n \to \infty} \gamma(T^n)^{1/n} = \lim_{n \to \infty} \gamma(T_M^n)^{1/n}. \]

We know from [8] that δ is the surjectivity radius of T_M. We proceed to show that $\delta = \delta(T)$. If $0 < |\lambda| < \delta$, then $(T - \lambda I)_M$ is surjective. Since $T_{X/M}$ is nilpotent, $(T - \lambda I)_{X/M}$ is invertible and hence bounded below. Using Lemma 5, we deduce that $T - \lambda I$ is s-regular. Hence, $\delta \leq \delta(T)$.

Conversely, assume $0 < |\lambda| < \delta(T)$. Since $T_{X/M}$ is nilpotent, $(T - \lambda I)_{X/M}$ is invertible and $(T - \lambda I)^{-1} M = M$. It follows that
\[(T - \lambda I) M = (T - \lambda I)(T - \lambda I)^{-1} M = M \cap R(T - \lambda I). \]

It is routine to verify that T is quasi-Fredholm. Thus, $M = R(T^\infty) \subseteq R(T - \lambda I)$ by Lemma 6. So we have $(T - \lambda I) M = M$. This shows that the surjectivity radius of T_M is no less than $\delta(T)$. Hence, $\delta(T) \leq \delta$. \qed

A dual to the above theorem is the following.
Theorem 9. If $\text{asc}(T) = d$ and $R(T^n)$ is closed for all $n \geq d$, then the stability radius of T is given by $\delta(T) = \lim_{n \to \infty} \gamma(T^n)^{1/n}$.

Theorem 10. Let T be a quasi-Fredholm operator; then the stability radius of T is given by $\delta(T) = \lim_{n \to \infty} \gamma(T^n)^{1/n}$.

Proof. Let $M = R(T^\infty) + N(T^d)$, $N = R(T^\infty)$. It follows from Theorem 7 that the subspaces M and N satisfy the requirement for Lemma 4. We now have:

(a) $T_{X/M}$ is bounded below and $\delta(T_{X/M}) = \lim_{n \to \infty} \gamma(T_{X/M}^n)^{1/n}$.

(b) By Lemma 4 (iii), T_M satisfies the requirement for Theorem 8 and

$$\delta(T_M) = \lim_{n \to \infty} \gamma(T_M^n)^{1/n} = \lim_{n \to \infty} \gamma(T_N^n)^{1/n}.$$

(c) By (a), (b) and Lemma 4 (v), the limit $\delta = \lim_{n \to \infty} \gamma(T^n)^{1/n}$ exists and

$$\delta = \min\{\delta(T_{X/M}), \delta(T_M)\}.$$

If $0 < |\lambda| < \delta$, then $|\lambda|$ is less than both $\delta(T_{X/M})$ and $\delta(T_M)$. Thus $(T - \lambda I)_{X/M}$ is bounded below [8] and $(T - \lambda I)_M$ is surjective (see the remark for Theorem 8). Lemma 5 shows that $T - \lambda I$ is s-regular. Hence, $\delta \leq \delta(T)$.

Conversely, let $0 < |\lambda| < \delta(T)$. By Theorem 6, $M = R[(T - \lambda I)^\infty]$. Since $T - \lambda I$ is s-regular, it follows from Theorem 5 that $(T - \lambda I)_{X/M}$ is bounded below and $(T - \lambda I)_M$ is surjective. Therefore,

$$|\lambda| < \min\{\delta(T_{X/M}), \delta(T_M)\} = \delta.$$

This shows that $\delta(T) \leq \delta$. \hfill \Box

So far, the results obtained are independent of the Apostol representation of operators given in [12]. For the rest of this paper, we assume the following results from [12]. Let

$$\mathcal{N} = \bigvee_{\lambda \in \rho_s(T)} N(T - \lambda I) \quad \text{and} \quad \mathcal{R} = \bigcap_{\lambda \in \rho_s(T)} R(T - \lambda I).$$

So \mathcal{N} is the closed subspace generated by $N(T - \lambda I)$ and \mathcal{R} is the intersection of $R(T - \lambda I)$ over all $\lambda \in \rho_s(T)$. Then \mathcal{N}, \mathcal{R} are hyper-invariant subspaces of T with $\mathcal{N} \subseteq \mathcal{R}$. If T_δ, T_0, T_π are the maps induced by T on the spaces $\mathcal{N}, \mathcal{R}/\mathcal{N}, X/\mathcal{R}$ respectively, then the following properties hold.

(i) T_δ has dense range, T_π is injective.

(ii) T is s-regular if and only if T_δ is surjective, T_0 is invertible and T_π is bounded below.

These two facts are required for the proofs of the following theorems. In particular, we need to know that $\sigma(T_0) \subseteq \sigma_s(T)$, which is a consequence of (ii). It is also known that T is quasi-Fredholm if and only if T_δ is surjective, T_0 is chain finite and T_π is bounded below. However, we will not use this fact.

Lemma 11. Let $N \subseteq M$ be closed T-invariant subspaces of X. Suppose that $T_{X/M}$ is injective, $T^d M \subseteq N$ for some d and T_N has dense range. If the limit $\limsup_{n \to \infty} \gamma(T^n)^{1/n}$ is non-zero, then T is quasi-Fredholm.

Proof. In the light of Theorem 7, it suffices to prove that $T_{X/M}$ is bounded below and T_N is surjective. It is clear from Lemma 1 that both $\limsup_{n \to \infty} \gamma(T_{X/N}^n)^{1/n}$ and $\limsup_{n \to \infty} \gamma(T_M^n)^{1/n}$ are positive.
Since $T^dM \subseteq N$ and $T_{X/M}$ is injective, we have the inclusions

$$M \subseteq T^{-n}N \subseteq T^{-n}M \subseteq M$$

for each $n \geq d$. Hence $M = T^{-n}N$ and $N(T_{X/N}^n) = M/N$ for $n \geq d$. Applying Lemma 2 to the operator $T_{X/N}$, we deduce that $(T_{X/N})^\wedge$ and hence $T_{X/M}$ is bounded below.

Since T_N has dense range, so has T_N^n for each $n \geq d$. Therefore

$$N \subseteq T^nN \subseteq T^nM \subseteq N.$$

Hence, $\overline{R(T^n_M)} = \overline{R(T^n_N)} = N$ for $n \geq d$. Applying Lemma 3 to the operator T_M, we deduce that $(T_M)^\sim = T_N$ is surjective.

The proofs of the following two lemmas are elementary, so we omit them.

Lemma 12. Let $N \subseteq M$ be closed T-invariant subspaces of X. If both $T_{X/N}$ and $T_{M/N}$ are injective, then $T_{X/N}$ is also injective.

Lemma 13. Let M_1, M_2 be T-invariant closed subspaces of X such that $M_1 + M_2$ is closed. Let

$$X_1 = \frac{M_1}{M_1 \cap M_2}, \quad X_2 = \frac{M_2}{M_1 \cap M_2}, \quad Y_1 = \frac{M_1 + M_2}{M_1}, \quad Y_2 = \frac{M_1 + M_2}{M_2}.$$

Then the diagrams

$$\begin{array}{ccc}
X_1 & \xrightarrow{\varphi} & Y_2 \\
T_{X_1} \downarrow & & \downarrow T_{Y_2} \\
X_1 & \xrightarrow{\varphi} & Y_2 \\
X_2 & \xrightarrow{\psi} & Y_1 \\
T_{X_2} \downarrow & & \downarrow T_{Y_1} \\
X_2 & \xrightarrow{\psi} & Y_1
\end{array}$$

are commutative, and φ and ψ are linear homeomorphisms induced by the identity on X.

We now give a generalization of [1, Prop. 3.3].

Theorem 14. Let σ be a closed and open subset of $\sigma_\gamma(T)$. If $0 \in \sigma$ and

$$\limsup_{n \to \infty} \gamma(T_n^{1/n}) = r > \sup_{\lambda \in \sigma} |\lambda|,$$

then T is quasi-Fredholm.

Proof. Since T_δ has dense range and T_{σ} is injective, we can apply both part (i) and (ii) of Lemma 1 to show that $\gamma(T_0^n) \geq \gamma(T^n)$ for all n. Let $\sigma_1 = \sigma \cap \sigma(T_0)$, $\sigma_2 = \sigma(T) \setminus \sigma(T_0)$; then both σ_1 and σ_2 are closed. Since $\sigma(T_0) \subseteq \sigma_\gamma(T)$, we have $\sigma_1 \cup \sigma_2 = \sigma$. Hence σ_1 and σ_2 are spectral sets of T_0. The spectral sets induce a decomposition

$$\mathcal{R}/\mathcal{N} = X_1 \oplus X_2, \quad T_0 = T_1 \oplus T_2 \quad \text{with} \quad \sigma(T_1) = \sigma_1, \quad \sigma(T_2) = \sigma_2.$$

Since $0 \not\in \sigma_2$, T_2 is invertible. We claim that T_1 is nilpotent. Let us assume that $\sigma_1 \neq \emptyset$; otherwise, $X_1 = 0$ and T_1 is trivially nilpotent. For each $x_1 \in X_1$, $x_2 \in X_2$, $T_0(x_1 + x_2) \in X_1 \Rightarrow T_2x_2 \in X_1 \Rightarrow T_2x_2 \in X_1 \cap X_2 = \{0\} \Rightarrow x_2 = 0.$

Therefore, $T_0^{-1}X_1 \subseteq X_1$. Thus T_0 and X_1 satisfy part (i) of Lemma 1. Hence, $\gamma(T_n^0) \geq \gamma(T_0^n) \geq \gamma(T^n)$ for all n. Taking limits,

$$r = \limsup_{n \to \infty} \gamma(T_n^{1/n}) \leq \limsup_{n \to \infty} \gamma(T_0^n)^{1/n}.$$
Lemma 12. Moreover, \(\psi_T \) is always injective. Thus, both \(\eta \) is the stability radius of \(T \). Therefore, the limit \(\lim_{n \to \infty} \gamma(T^n)^{1/n} \) always exists and equals \(\eta \). If \(\eta \neq 0 \), then case (b) must be true and \(T \) is quasi-Fredholm. Conversely, if \(T \) is quasi-Fredholm, then \(\eta \) is the stability radius of \(T \). From Lemma 6, we know that the stability radius of a quasi-Fredholm operator is always non-zero. This completes our proof.

The significance of the corollary is that the class of quasi-Fredholm operators is the most general class of operators for which the limit \(\lim_{n \to \infty} \gamma(T^n)^{1/n} \) is equal to the stability radius \(\delta(T) \) with respect to the Apostol spectrum.

Acknowledgement

The author wishes to thank the referee for suggesting improved organization of the paper as well as a revision and clarification of some proofs.

References

Department of Mathematics, University of Melbourne, Victoria, 3052, Australia

E-mail address: pakpoon@maths.mu.oz.au