Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

An application of the Lefschetz fixed-point theorem to non-convex
differential inclusions on manifolds


Authors: Stanislaw Domachowski and Tadeusz Pruszko
Journal: Proc. Amer. Math. Soc. 126 (1998), 1231-1236
MSC (1991): Primary 58F32; Secondary 47H04, 28B20
DOI: https://doi.org/10.1090/S0002-9939-98-04278-6
MathSciNet review: 1443380
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A selector theorem for non-convex orientor fields on closed manifolds is given and the Lefschetz fixed point theorem is used to establish an existence result for these ones.


References [Enhancements On Off] (What's this?)

  • [1] H. A. Antosiewicz and A. Cellina, Continuous selections and differential relations, J. Differential Equations 19 (1975), no. 2, 386–398. MR 0430368, https://doi.org/10.1016/0022-0396(75)90011-X
  • [2] Alberto Bressan and Giovanni Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), no. 1, 69–86. MR 947921
  • [3] Stanisław Domachowski and Tadeuz Pruszko, An application of the Eilenberg-Montgomery theorem to measurable orientor fields on manifolds, Funkcial. Ekvac. 36 (1993), no. 1, 95–107. MR 1232081
  • [4] A. F. Filippov, The existence of solutions of multivalued differential equations, Mat. Zametki 10 (1971), 307–313 (Russian). MR 0298090
  • [5] Andrzej Fryszkowski, Continuous selections for a class of nonconvex multivalued maps, Studia Math. 76 (1983), no. 2, 163–174. MR 730018
  • [6] Andrzej Granas, Points fixes pour les applications compactes: espaces de Lefschetz et la théorie de l’indice, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 68, Presses de l’Université de Montréal, Montreal, Que., 1980 (French). With an appendix, “Infinite-dimensional cohomology and bifurcation theory”, by Kazimierz Gęba. MR 569745
  • [7] H. Kaczyński and C. Olech, Existence of solutions of orientor fields with non-convex right-hand side, Ann. Polon. Math. 29 (1974), 61–66. Collection of articles dedicated to the memory of Tadeusz Ważewski. MR 0358513
  • [8] Stanisław Łojasiewicz Jr., The existence of solutions for lower semicontinuous orientor fields, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), no. 9-10, 483–487 (1981) (English, with Russian summary). MR 629022
  • [9] Czeslaw Olech, Existence of solutions of non-convex orientor fields, Boll. Un. Mat. Ital. (4) 11 (1975), no. 3, suppl., 189–197 (English, with Italian summary). Collection of articles dedicated to Giovanni Sansone on the occasion of his eighty-fifth birthday. MR 0394372
  • [10] Tadeusz Pruszko, Some applications of the topological degree theory to multivalued boundary value problems, Dissertationes Math. (Rozprawy Mat.) 229 (1984), 48. MR 741752

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 58F32, 47H04, 28B20

Retrieve articles in all journals with MSC (1991): 58F32, 47H04, 28B20


Additional Information

Stanislaw Domachowski
Affiliation: Institute of Mathematics, Gdańsk University, ul. Wita Stwosza 57, 80–952 Gdańsk, Poland

Tadeusz Pruszko
Affiliation: Institute of Mathematics, Gdańsk University, ul. Wita Stwosza 57, 80–952 Gdańsk, Poland

DOI: https://doi.org/10.1090/S0002-9939-98-04278-6
Received by editor(s): September 23, 1996
Additional Notes: The work of the first author was supported by the University of Gdańsk, grant nr BW-5100-5-0055-6
Communicated by: Hal L. Smith
Article copyright: © Copyright 1998 American Mathematical Society