Derivations implemented by local multipliers
Author:
Martin Mathieu
Journal:
Proc. Amer. Math. Soc. 126 (1998), 11331138
MSC (1991):
Primary 46L57; Secondary 47B47, 16N60
MathSciNet review:
1452813
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A condition on a derivation of an arbitrary C*algebra is presented entailing that it is implemented as an inner derivation by a local multiplier.
 [1]
Pere
Ara, On the symmetric algebra of quotients of a
𝐶*algebra, Glasgow Math. J. 32 (1990),
no. 3, 377–379. MR 1073678
(92g:46070), http://dx.doi.org/10.1017/S0017089500009460
 [2]
Pere
Ara and Martin
Mathieu, A local version of the DaunsHofmann theorem, Math.
Z. 208 (1991), no. 3, 349–353. MR 1134580
(93b:46109), http://dx.doi.org/10.1007/BF02571531
 [3]
Pere
Ara and Martin
Mathieu, An application of local multipliers to centralizing
mappings of 𝐶*algebras, Quart. J. Math. Oxford Ser. (2)
44 (1993), no. 174, 129–138. MR 1222369
(94d:46057), http://dx.doi.org/10.1093/qmath/44.2.129
 [4]
George
A. Elliott, Automorphisms determined by multipliers on ideals of a
𝐶*algebra, J. Functional Analysis 23 (1976),
no. 1, 1–10. MR 0440372
(55 #13247)
 [5]
I.
N. Herstein, A condition that a derivation be inner, Rend.
Circ. Mat. Palermo (2) 37 (1988), no. 1, 5–7.
MR 994134
(90h:16056), http://dx.doi.org/10.1007/BF02844264
 [6]
Richard
V. Kadison, Derivations of operator algebras, Ann. of Math.
(2) 83 (1966), 280–293. MR 0193527
(33 #1747)
 [7]
V.
K. Kharchenko, Automorphisms and derivations of associative
rings, Mathematics and its Applications (Soviet Series), vol. 69,
Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the
Russian by L. Yuzina. MR 1174740
(93i:16048)
 [8]
Martin
Mathieu, Elementary operators on prime 𝐶*algebras. I,
Math. Ann. 284 (1989), no. 2, 223–244. MR 1000108
(90h:46092), http://dx.doi.org/10.1007/BF01442873
 [9]
Martin
Mathieu, The 𝑐𝑏norm of a derivation,
Algebraic methods in operator theory, Birkhäuser Boston, Boston, MA,
1994, pp. 144–152. MR 1284942
(95g:46128)
 [10]
Dorte
Olesen, Derivations of 𝐴𝑊*algebras are inner,
Pacific J. Math. 53 (1974), 555–561. MR 0358378
(50 #10844)
 [11]
Gert
K. Pedersen, Approximating derivations on ideals of
𝐶*algebras, Invent. Math. 45 (1978),
no. 3, 299–305. MR 0477792
(57 #17302)
 [12]
Shôichirô
Sakai, Derivations of 𝑊*algebras, Ann. of Math. (2)
83 (1966), 273–279. MR 0193528
(33 #1748)
 [13]
Shôichirô
Sakai, Derivations of simple 𝐶*algebras. II, Bull.
Soc. Math. France 99 (1971), 259–263. MR 0293414
(45 #2491)
 [14]
D. W. B. Somerset, The proximinality of the centre of a C*algebra, J. Approx. Theory 89 (1997),114117. CMP 97:10
 [1]
 P. Ara, On the symmetric algebra of quotients of a C*algebra, Glasgow Math. J. 32 (1990), 377379. MR 92g:46070
 [2]
 P. Ara and M. Mathieu, A local version of the DaunsHofmann theorem, Math. Z. 208 (1991), 349353. MR 93b:46109
 [3]
 P. Ara and M. Mathieu, An application of local multipliers to centralizing mappings of C*algebras, Quart. J. Math. Oxford (2) 44 (1993), 129138. MR 94d:46057
 [4]
 G. A. Elliott, Automorphisms determined by multipliers on ideals of a C*algebra, J. Funct. Anal. 23 (1976), 110. MR 55:13247
 [5]
 I. N. Herstein, A condition that a derivation be inner, Rend. Circ. Mat. Palermo (2) 37 (1988), 57. MR 90h:16056
 [6]
 R. V. Kadison, Derivations of operator algebras, Annals of Math. 83 (1966), 280293. MR 33:1747
 [7]
 V. K. Kharchenko, Automorphisms and derivations of associative rings, Kluwer Acad. Publ., Dordrecht, 1991. MR 93i:16048
 [8]
 M. Mathieu, Elementary operators on prime C*algebras, I, Math. Ann. 284 (1989), 223244. MR 90h:46092
 [9]
 M. Mathieu, The cbnorm of a derivation, Algebraic methods in operator theory (R. E. Curto and P. E. T. Jørgensen, eds.), Birkhäuser, Basel, 1994, pp. 144152. MR 95g:46128
 [10]
 D. Olesen, Derivations of AW*algebras are inner, Pacific J. Math. 53 (1974), 555561. MR 50:10844
 [11]
 G. K. Pedersen, Approximating derivations on ideals of C*algebras, Invent. Math. 45 (1978), 299305. MR 57:17302
 [12]
 S. Sakai, Derivations of W*algebras, Annals of Math. 83 (1966), 273279. MR 33:1748
 [13]
 S. Sakai, Derivations of simple C*algebras, II, Bull. Soc. Math. France 99 (1971), 259263. MR 45:2491
 [14]
 D. W. B. Somerset, The proximinality of the centre of a C*algebra, J. Approx. Theory 89 (1997),114117. CMP 97:10
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
46L57,
47B47,
16N60
Retrieve articles in all journals
with MSC (1991):
46L57,
47B47,
16N60
Additional Information
Martin Mathieu
Affiliation:
The Fields Institute for Research in Mathematical Sciences, Waterloo, Ontario, Canada
Address at time of publication:
Department of Mathematics, St. Patrick’s College, Maynooth, Co. Kildare, Ireland
Email:
mm@maths.may.ie
DOI:
http://dx.doi.org/10.1090/S0002993998043949
PII:
S 00029939(98)043949
Keywords:
$C^*$algebras,
derivations,
local multipliers
Received by editor(s):
September 23, 1996
Additional Notes:
This work was done while the author was a Visiting Fellow at The Fields Institute for Research in Mathematical Sciences, Waterloo, Ontario, Canada, supported by the Deutsche Forschungsgemeinschaft (DFG), to both of which he is very grateful
Communicated by:
Palle E. T. Jorgensen
Article copyright:
© Copyright 1998 American Mathematical Society
