Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

On a theorem of Picard


Authors: F. Gesztesy and W. Sticka
Journal: Proc. Amer. Math. Soc. 126 (1998), 1089-1099
MSC (1991): Primary 33E05, 34C25; Secondary 58F07
MathSciNet review: 1476130
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We extend Picard's theorem on the existence of elliptic solutions of the second kind of linear homogeneous ${n}^{\mathrm{th}}$-order scalar ordinary differential equations with coefficients being elliptic functions (associated with a common period lattice) to linear homogeneous first-order $n\times n$ systems. In particular, the qualitative Floquet-type structure of fundamental systems of solutions in terms of elliptic and exponential functions, polynomials, and Weierstrass zeta functions of the independent variable is determined. Connections with completely integrable systems are mentioned.


References [Enhancements On Off] (What's this?)

  • 1. Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1992. Reprint of the 1972 edition. MR 1225604 (94b:00012)
  • 2. N. I. Akhiezer, Elements of the theory of elliptic functions, Translations of Mathematical Monographs, vol. 79, American Mathematical Society, Providence, RI, 1990. Translated from the second Russian edition by H. H. McFaden. MR 1054205 (91k:33016)
  • 3. E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its, and V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin, 1994.
  • 4. H. Burkhardt, Elliptische Funktionen, 2nd ed., Verlag von Veit, Leipzig, 1906.
  • 5. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Krieger, Malabar, 1985.
  • 6. L. A. Dickey, Soliton equations and Hamiltonian systems, Advanced Series in Mathematical Physics, vol. 12, World Scientific Publishing Co., Inc., River Edge, NJ, 1991. MR 1147643 (93d:58067)
  • 7. M. V. Fedoryuk, Lamé wave functions in Jacobi form. I, Differentsial′nye Uravneniya 23 (1987), no. 10, 1715–1724, 1835 (Russian). MR 928854 (89c:33014)
  • 8. G. Floquet, Sur les équations différentielles linéaires à coefficients doublement périodiques, C. R. Acad. Sci. Paris, 98, 38-39, 82-85 (1884).
  • 9. G. Floquet, Sur les équations différentielles linéaires à coefficients doublement périodiques, Ann. Sci. Ecole Norm. Sup., 1, 181-238 (1884).
  • 10. G. Floquet, Addition a un mémorie sur les équations différentielles linéaires, Ann. Sci. Ecole Norm. Sup., 1, 405-408 (1884).
  • 11. F. R. Gantmacher, The theory of matrices. Vols. 1, 2, Translated by K. A. Hirsch, Chelsea Publishing Co., New York, 1959. MR 0107649 (21 #6372c)
  • 12. F. Gesztesy and R. Weikard, Lamé potentials and the stationary (m)KdV hierarchy, Math. Nachr., 176, 73-91 (1995). CMP 96:04
  • 13. F. Gesztesy and R. Weikard, On Picard potentials, Differential Integral Equations 8 (1995), no. 6, 1453–1476. MR 1329850 (96e:34141)
  • 14. F. Gesztesy and R. Weikard, Treibich-Verdier potentials and the stationary (m)KdV hierarchy, Math. Z. 219 (1995), no. 3, 451–476. MR 1339715 (96e:14030), http://dx.doi.org/10.1007/BF02572375
  • 15. Fritz Gesztesy and Rudi Weikard, Picard potentials and Hill’s equation on a torus, Acta Math. 176 (1996), no. 1, 73–107. MR 1395670 (97f:14046), http://dx.doi.org/10.1007/BF02547336
  • 16. F. Gesztesy and R. Weikard, Toward a characterization of elliptic solutions of hierarchies of soliton equations, Contemp. Math., to appear.
  • 17. F. Gesztesy and R. Weikard, A characterization of all elliptic solutions of the AKNS hierarchy, Acta Math., to appear.
  • 18. Jeremy Gray, Linear differential equations and group theory from Riemann to Poincaré, Birkhäuser Boston, Inc., Boston, MA, 1986. MR 891402 (89d:01041)
  • 19. G.-H. Halphen, Traité des Fonctions Elliptiques, tome 2, Gauthier-Villars, Paris, 1888.
  • 20. Philip Hartman, Ordinary differential equations, 2nd ed., Birkhäuser, Boston, Mass., 1982. MR 658490 (83e:34002)
  • 21. C. Hermite, Oeuvres, tome 3, Gauthier-Villars, Paris, 1912.
  • 22. E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944. MR 0010757 (6,65f)
  • 23. M. Krause, Theorie der doppeltperiodischen Funktionen einer veränderlichen Grösse, Vol. 2, Teubner, Leipzig, 1897.
  • 24. G. Mittag-Leffler, Sur les équations différentielles linéaires à coefficients doublement périodiques, C. R. Acad. Sci. Paris, 90, 299-300 (1880).
  • 25. S. Novikov, S. V. Manakov, L. P. Pitaevskiĭ, and V. E. Zakharov, Theory of solitons, Contemporary Soviet Mathematics, Consultants Bureau [Plenum], New York, 1984. The inverse scattering method; Translated from the Russian. MR 779467 (86k:35142)
  • 26. E. Picard, Sur une généralisation des fonctions périodiques et sur certaines équations différentielles linéaires, C. R. Acad. Sci. Paris, 89, 140-144 (1879).
  • 27. E. Picard, Sur une classe d'équations différentielles linéaires, C. R. Acad. Sci. Paris, 90, 128-131 (1880).
  • 28. E. Picard, Sur les équations différentielles linéaires à coefficients doublement périodiques, J. Reine Angew. Math., 90, 281-302 (1881).
  • 29. E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469 (97k:01072)
  • 30. V. A. Yakubovich and V. M. Starzhinskii, Linear differential equations with periodic coefficients. 1, 2, Halsted Press [John Wiley & Sons]\ New York-Toronto, Ont.,; Israel Program for Scientific Translations, Jerusalem-London, 1975. Translated from Russian by D. Louvish. MR 0364740 (51 #994)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 33E05, 34C25, 58F07

Retrieve articles in all journals with MSC (1991): 33E05, 34C25, 58F07


Additional Information

F. Gesztesy
Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
Email: fritz@math.missouri.edu

W. Sticka
Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211

DOI: http://dx.doi.org/10.1090/S0002-9939-98-04668-1
PII: S 0002-9939(98)04668-1
Received by editor(s): September 23, 1996
Additional Notes: The research was based upon work supported by the National Science Foundation under Grant No.\ DMS-9623121.
Communicated by: Hal L. Smith
Article copyright: © Copyright 1998 American Mathematical Society