**-REPRESENTATIONS ON BANACH **-ALGEBRAS

A. K. GAUR

(Communicated by Palle E. T. Jorgensen)

Abstract. We study notions of \(g\)-bounded linear functionals and representable functionals on Banach **-algebras. An equivalence between these two is established for general Banach **-algebras. In particular, we characterize \(g\)-bounded linear functionals on Banach **-algebras with approximate identity and isometric involution. In addition, we prove a result on representation of \(g\)-bounded positive linear functionals in terms of cyclic vectors for the corresponding **-representation.

1. Introduction

Let \(A\) be a complex Banach **-algebra. We assume neither the existence of an identity nor that the involution is continuous. We write \(S(A) = \{a \text{ in } A \text{ such that } a^* = a\}\) for the set of all self-adjoint elements of \(A\). A **-ideal of \(A\) is an ideal \(J\) of \(A\) where \(a \in J\) implies \(a^* \in J\).

A **-semi-norm on \(A\) is a function \(\eta : A \to \mathbb{R}\) such that for all \(a, b \in A\) and \(\alpha \in \mathbb{C}\)

\[
\begin{align*}
(1) \quad & \eta(a + b) \leq \eta(a) + \eta(b), \\
(2) \quad & \eta(\alpha a) = |\alpha| \eta(a), \\
(3) \quad & \eta(ab) \leq \eta(a) \cdot \eta(b), \\
(4) \quad & \eta(a^* a) = (\eta(a))^2.
\end{align*}
\]

\(P(A)\) denotes the set of all **-semi-norms on \(A\). For more on **-semi-norms, see [2, 3]. Suppose \(g(a) = \sup\{\eta(a) : \eta \in P(A)\}\). Then \(g\) defines a **-semi-norm on \(A\); in fact, \(g\) is the greatest **-semi-norm on \(A\) in the pointwise ordering.

A **-representation of \(A\) is a mapping \(\pi : A \to B(H)\), where \(B(H)\) denotes the algebra of all bounded linear operators on a Hilbert space \(H\), such that for all \(a, b \in A\) and \(\alpha \in \mathbb{C}\)

\[
\begin{align*}
(1) \quad & \pi(a + b) = \pi(a) + \pi(b), \\
(2) \quad & \pi(\alpha a) = \alpha \pi(a), \\
(3) \quad & \pi(ab) = \pi(a) \cdot \pi(b), \\
(4) \quad & \pi(a^*) = (\pi(a))^*.
\end{align*}
\]

Received by the editors October 16, 1995 and, in revised form, February 14, 1996, August 19, 1996, September 10, 1996, and October 25, 1996; the contents of this paper were presented at the AMS San Francisco Meeting on January 6, 1995.

1991 Mathematics Subject Classification. Primary 46K15, 46H15.

Key words and phrases. Banach **-algebra, \(g\)-bounded linear functionals, representable functional, **-representation.

This research is supported by the Presidential Scholarship Award, 1995–96.
Thus \(|g| = \sup \{|f(a)| : g(a) \leq 1\}.

The set \(D(g)\) consists of all \(g\)-bounded positive linear functionals \(f\) on \(A\) with \(|f|_g \leq 1\). A positive \(g\)-bounded linear functional \(f\) on \(A\) will be called a state of \(A\) if \(|f|_g = 1\).

Lemma 2.1. Let \(A\) be a unital algebra and \(f\) be a positive \(g\)-bounded linear functional on \(A\). Then \(f\) is a state of \(A\).

Proof. Since \(f(1) \leq 1\), it follows that \(|f|_g \geq f(1)\), where 1 is the identity element in the algebra \(A\). But for all \(a \in A\),

\[|f(a)| \leq |f|_g g(a).\]

Hence for all \(a \in A\),

\[|f(a)|^2 \leq f(1)|f|_g g(a^*a) = f(1)|f|_g g(a)^2.\]

Thus \(|f|_g^2 \leq f(1)|f|_g\) and consequently \(f\) is a state of \(A\).

Proposition 2.1. Let \(u\) and \(v\) be positive \(g\)-bounded linear functionals on \(A\). Then for all \(a \in A\)

\[(i) \ |u(a)|^2 \leq |u|_g^2 |u(a^*a)|,
(ii) \ |u + v|_g = |u|_g + |v|_g,
(iii) \ |u|_g = \sup \{|u(a^*a) : g(a) \leq 1\},
(iv) \ u \ and \ v \ are \ hermitian \ functionals.\]

Proof. Suppose that \(A\) has no unit element. If \(J_g = \{a \in A : g(a) = 0\}\), then \(J_g\) is a closed two-sided \(*\)-ideal of \(A\). In that case \(A/J_g\) becomes a quotient \(*\)-algebra. Let \(a \rightarrow \lambda_a\) denote the canonical mapping of \(A\) onto \(A/J_g\). We define a \(B^*\)-norm \(\pi\) on \(A/J_g\) as follows: For all \(a \in A/J_g\), \(\pi(\lambda_a) = g(a)\). The completion \(A_g\) of \(A/J_g\) with respect to this norm is a \(B^*\)-algebra. On \(A/J_g\), define \(\pi(\lambda_a) = \overline{u}(a), \overline{v}(\lambda_a) = v(a)\), for all \(\lambda_a\) in \(A/J_g\). Then \(\overline{u}\) and \(\overline{v}\) are well defined positive \(\overline{g}\)-bounded linear functionals on \(A/J_g\). Furthermore, \(|\overline{u}|_{\pi|_\overline{g}} = |u|_g\) and \(|\overline{v}|_{\pi|_\overline{g}} = |v|_g\). Hence \(\overline{u}\) and \(\overline{v}\) have a unique norm preserving extension to the \(B^*\)-algebra \(A_g\). Denote these extensions by \(U\) and \(V\), respectively.

Thus \(U\) and \(V\) are positive linear functionals on \(A_g\), hence (i), (ii), and (iv) follow from 2.1.5 and 2.1.6 in [1]. To prove (iii) we proceed as follows. Let \(\sup\{|u(a^*a) : g(a) \leq 1\} = \alpha\). Then \(\alpha \leq |u|_g\), since if \(g(a) \leq 1\), \(u(a^*a) \leq |u|_g g(a^*a) \leq |u|_g\). By the definition of \(|u|_g\) there exists a sequence \(\{a_k\}\) of elements of \(A\) with \(g(a_k) \leq 1\) and \(|u|_g = \lim_{k \rightarrow \infty} |u(a_k)|\).
It follows from (i) that
\[|u(a_k)|^2 \leq |u|_g u(a_k^*a_k) \leq |u|_g^2 g(a_k) \leq |u|_g^2. \]
Hence \(\lim_{k \to \infty} u(a_k^*a_k) = |u|_g \). The case where \(A \) is unital follows from Lemma 2.1 above.

Remark 2.1. Proposition 2.1 is also true for any \(B^* \)-semi-norm. The following theorem gives a necessary and a sufficient condition for a positive functional on an algebra to be \(g \)-bounded.

Theorem 2.1. A positive linear functional \(f \) on \(A \) is \(g \)-bounded if and only if there exists a positive constant \(M \), which depends only on \(f \), such that for all \(a \) in \(A \), \(|f(a)| \leq Mf(a^*a)\).

Moreover if \(f \) is \(g \)-bounded, then
\[|f|_g = \sup_{a \in A} \left\{ \frac{|f(a)|^2}{f(a^*a)} \right\}. \]

Proof. Let \(f \) be a \(g \)-bounded positive functional. Then by Proposition 2.1(i) it follows that for all \(a \) in \(A \), \(|f(a)|^2 \leq Mf(a^*a)\).

Suppose conversely that for all \(a \) in \(A \), and for every positive linear functional \(f \) on \(A \), there exists a positive constant \(M \) such that \(|f(a)|^2 \leq Mf(a^*a)\). Then for all \(x \) and \(a \) in \(A \)
\[\beta_f = \sup_{f(x^*x) \leq 1} \left\{ \sqrt{f(x^*a^*ax)} \right\} \geq \sup_{f(x^*x) \leq 1} \left\{ \frac{|f(ax)|}{\sqrt{M}} \right\}. \]
Let \(f(a^*a) > 0 \) and \(a/\sqrt{f(a^*a)} = x \). Then \(f(x^*x) = 1 \). Now \(\beta_f(a) \geq |f(a^2)|/\sqrt{Mf(a^*a)} \). If \(a \) is in \(S(A) \), then we have \(\sqrt{|f(a)|^2/M} \leq \sqrt{f(a^*a)/M} \leq \beta_f(a) \); that is, \(|f(a)| \leq M\beta_f(a) \). Hence, \(|f(a)|^2 \leq Mf(a^*a) \leq M^2\beta_f(a)^2 \) so that \(|f(a)| \leq M\beta_f(a) \). This proves that \(f \) is \(g \)-bounded. Furthermore, for all \(a \) in \(A \) and for any positive linear functional \(f \) on \(A \),
\[\sup_{a \in A} \left\{ \frac{|f(a)|^2}{f(a^*a)} \right\} \leq |f|_g \leq M, \]
where \(M \) is a positive constant (depending only on \(f \)). Therefore we may suppose that \(M = \sup_{a \in A} |f(a)|/f(a^*a) \) so that we obtain \(|f|_g = \sup_{a \in A} |f(a)|^2/f(a^*a) \).

Remark 2.2. If \(A \) has an identity \(1 \), then every positive linear functional \(f \) is \(g \)-bounded. This follows directly by Theorem 2.1 and the Cauchy-Schwarz inequality. Further, if \(A \) is unital with isometric involution, then by Lemma 2.1 it follows that \(\|f\| = |f|_g = f(1) \).

We use the fact of Remark 2.2 and Theorem 2.1 to give a characterization of \(g \)-bounded linear functionals when the given algebra has approximate identity and isometric involution.

Theorem 2.2. If \(A \) has isometric involution and approximate identity, a positive linear functional \(f \) is \(g \)-bounded if and only if it is continuous.

Proof. If \(f \) is \(g \)-bounded, then for all \(a \) in \(A \), \(|f(a)| \leq |f|_g g(a) \leq |f|_g \|a\| \) and consequently \(f \) is continuous. Suppose conversely that \(f \) is continuous, then for all \(a \) in \(A \), \(|f(a)|^2 \leq \|f\|f(a^*a) \) by 2.1.5 in [1]. Hence by Theorem 2.1 \(f \) is \(g \)-bounded.

Corollary 2.1. \(|f|_g = \|f\| \), for all \(f \) as in Theorem 2.2.
Proof. Since \(f \) is \(g \)-bounded we have \(|f|_g \leq \|f\|\). Also the involution on \(A \) is isometric. Therefore \(|f(a)| \leq |f|_g g(a) \leq |f|_g \|a\|\). This implies that \(\|f\| \leq |f|_g \) and hence \(|f|_g = \|f\|\).

3. \(g \)-BOUNDED FUNCTIONALS IN TERMS OF REPRESENTABLE FUNCTIONALS

In the following theorem we establish a relationship between \(g \)-bounded and representable functionals. Here it is shown that the representable functionals are the positive \(g \)-bounded linear functionals and these are precisely the functionals generated by cyclic \(*\)-representations of the algebra.

Theorem 3.1. A positive linear functional \(f \) on \(A \) is representable if and only if it is \(g \)-bounded.

Proof. Suppose that \(f \) is representable. Then by the definition of representable functionals there exists \(*\)-representation \(\pi \) of \(A \) on \(H \) and a vector \(x \) in \(H \) such that for all \(a \) in \(A \), \(|f(a)| \leq |\pi(a)| \) and \(||x||^2 \leq g(a)||x||^2 \). Thus \(f \) is \(g \)-bounded.

Suppose conversely that \(f \) is \(g \)-bounded. If the norm on \(A^+ \), the unitization of \(A \), is given by \(||(a, \lambda)|| = \|a\| + |\lambda|\) for all \(a \) in \(A \) and \(\lambda \) in \(\mathbb{C} \), then \(A \) is isometrically and \(*\)-isomorphically embedded in the unital Banach \(*\)-algebra \(A^+ \). Since \(f \) is \(g \)-bounded it follows from Proposition 2.1(i) that for all \(a \) in \(A \), \(|f(a)|^2 \leq |f|_g f(a^*a) \).

Let \(f^+ \) be defined on \(A^+ \) by \(f^+((a, \lambda)) = f(a) + \lambda|f|_g \), where \((a, \lambda)\) is in \(A^+ \). Then \(f^+ \) is a linear functional on \(A^+ \), which also extends \(f \) on \(A \) and

\[
\begin{align*}
 f^+((a, \lambda)^*(a, \lambda)) &= f^+(a^*a + \lambda a + \lambda^*a + \lambda^*) \\
 &= f(a^*a) + \overline{\lambda}f(a) + |\lambda|^2|f|_g.
\end{align*}
\]

Thus,

\[
 f^+((a, \lambda)^*(a, \lambda)) \geq f(a^*a) - 2|\lambda|(|f|_g f(a^*a))^{1/2} + |\lambda|^2|f|_g
\]

\[
= (f(a^*a))^{1/2} - |\lambda| |f|_g^{1/2})^2 \geq 0.
\]

Hence \(f^+ \) is a positive linear functional on \(A^+ \).

Let \(\mathcal{L}_f = \{a \in A^+: f^+(ba) = 0 \text{ for all } b \in A^+\} \). Then on the quotient space \(A^+/\mathcal{L}_f \) we define \((x_a, x_b)_f = f^+(b^*a)\), \(a \) in \(x_a, b \) in \(x_b \). If \(H_f \) is the completion of \(A^+/\mathcal{L}_f \), then

\[
||x_f||^2 = \langle x_f, x_f \rangle_f = |f^+(0, 1)^*(0, 1)| = |f|_g.
\]

For each \(a \) in \(A^+ \) let \(\pi(a) \) be defined by \(\pi(a)x_b = x_{ab}, x_b \in A^+/\mathcal{L}_f \). Then \(\pi(a) \) is a well-defined linear operator on \(A^+/\mathcal{L}_f \) and for \(a \) in \(A^+
\]

\[
||\pi(a)x_b||_f^2 = \langle x_{ab}, x_{ab} \rangle_f = f^+(b^*a^*ab).
\]

It is easy to see that \(\pi(a) \) is a bounded linear operator on \(A^+/\mathcal{L}_f \) and so it has a unique extension to a bounded linear operator \(\pi^+(a) \) on \(H_f \). Also the mapping \(a \to \pi^+(a) \) is an algebra homomorphism from \(A^+ \) into \(B(H_f) \) and for all \(a, b \) and \(c \) in \(A^+
\]

\[
(\pi(a)x_b, x_c)_f = (x_b, \pi(a^*)x_c)_f.
\]

Hence for all \(x, y \) in \(H_f \), \((\pi(a)x, y)_f = (y, \pi(a^*)y)_f \) so that for all \(a \) in \(A^+ \),

\[
(\pi^+(a))^* = \pi^+(a^*) \text{.}
\]

Thus \(\pi^+ \) is a \(*\)-representation of \(A^+ \) on \(H_f \) and hence the restriction map \(\pi_f = \pi^+|_A \) is a \(*\)-representation of \(A \) on \(H_f \). Next, for all \(a \) in \(A \)

\[
(\pi(a)x, y)_f = (x_{(a,0)}, x_{(0,1)})_f = f^+((a,0)) = f(a).
\]
Thus f is a positive linear functional represented by the pair (π_f, x_f), and the proof is complete.

The following proposition shows that our definition of representability of positive linear functionals is equivalent to the definition given by Rickart ([5], 4.5.5). The proof uses the construction of the proof of Theorem 3.1.

Proposition 3.1. If f is a g-bounded positive linear functional on A then f can be represented by a pair (π, x), where x is a cyclic vector for the $*$-representation π, and moreover $|f|_g = \|x_f\|^2_f$.

Proof. By the definition of cyclic vector and Theorem 3.1 it is obvious that x_f is a cyclic vector for the $*$-representation π^+ of A^+ on H_f. We claim that x_f is a cyclic vector for the $*$-representation π_f of A.

Since f is g-bounded, there exists a sequence $\{a_k\}$ of elements of A with $g(a_k) \leq 1$ such that $|f|_g = \lim_{k \to \infty} f(a_k^* a_k)$. Let $b_k = a_k^* a_k$. Then b_k is in $S(A)$ and $g(b_k) \leq 1$, and since $|f(b_k)|^2 \leq |f|_g |b_k|^2 \leq |f|_g^2$, it follows that $\lim_{k \to \infty} f(b_k^* b_k) = |f|_g$.

Consider $\|x_{b_k} - x_f\|_f$. Then $\|x_{b_k} - x_f\|_f^2 = f(b_k^* b_k) - 2f(b_k) + |f|_g \to 0$ as $k \to \infty$. Hence for any a in A^+ we have $\|ax_{b_k} - xa\|_f = \|\pi^+(a)(xb_k - xf)\|_f \to 0$ as $k \to \infty$. However, ab_k is in A and hence $\pi_f(A)x_f$ is dense in A^+L_f. It follows that it is also dense in H_f. Thus x_f is a cyclic vector for π_f. The equality $|f|_g = \|x_f\|^2_f$ follows from the proof of Theorem 3.1.

4.

In this section we question why g-bounded functionals may be interesting and supply an answer to this question as well. During the course of this research, we observed that in the case of B^*-algebras, g-bounded functionals coincide with the original norm. A g-bounded functional is more general in defining the state space of A since the set $D(g)$ of g-bounded functionals is a subspace of A^*, the dual space of A.

Proposition 2.1 holds for any B^*-semi-norm. A g-bounded functional can be represented by a pair of cyclic vectors for the $*$-representations.

Let π be a $*$-representation of A on the Hilbert space H and let x be in H. Then any positive linear functional f, which is represented by (π, x), defines a g-bounded positive functional f_T on A with $f_T \leq f$, where T is a self-adjoint operator on H such that $\pi(A) = \pi(A)T$ and $0 \leq T \leq I_H$ (see Lemma 1.1 in [4]). Lemma 1.1 in [4] is an extension of a result by Dixmier ([1], 2.5.1).

Another application of g-bounded functionals to the representation theory can be seen in characterizing representable functionals which can be represented by a topologically irreducible representation.

A positive linear functional f is a pure state of A (see Definition 2.1, [4]) if it is non-zero and g-bounded and if any g-bounded positive linear functional dominated by f is of the form βf with β in $[0, 1]$. The following result, which has been submitted to another journal, gives an application of g-bounded functionals.

Theorem 4.1 ([4]). Let (π, x) be a cyclic representation of a positive linear functional f. Then π is topologically irreducible and non-zero if and only if f is a pure state of A.

An intriguing development in the representation theory of g-bounded functionals is Theorem 3.1 in [4] which states that the extreme points of $D(g)$ are the zero functional and the pure states of A.
In closing, we would like to express our appreciation to the referee for his or her valuable suggestions which improved the clarity of our presentation.

References

Department of Mathematics, Duquesne University, Pittsburgh, Pennsylvania 15282
E-mail address: gaur@mathcs.duq.edu