VOLUME OF INTERSECTIONS AND SECTIONS OF THE UNIT BALL OF ℓ_p^n

MICHAEL SCHMUCKENSCHLÄGER

(Communicated by Dale Alspach)

Abstract. An asymptotic formula for the volume of the intersection of a suitable multiple of the unit ball of ℓ_p^n and the cube $[-1/2, 1/2]^n$ will be proved. We also show that the isotropic constant of the unit ball of ℓ_p^n, $1 \leq p \leq 2$, is bounded by $1/\sqrt{12}$.

1. Introduction and notation

Let $r(n, p)B_p^n$ be the multiple of the unit ball B_p^n of ℓ_p^n such that
\[\text{Vol}_n(r(n, p)B_p^n) = 1. \]

In [SS] the following theorem is proved:

Theorem 1.1. For all $0 < p \leq \infty$ and all $0 < q < \infty$ we have
\[\lim_{n \to \infty} \text{Vol}_n(r(n, p)B_p^n \cap t.r(n, q)B_q^n) = \begin{cases} 0 & \text{if } tA(p, q) < 1, \\ 1 & \text{if } tA(p, q) > 1, \end{cases} \]

where
\[A(p, q) = \begin{cases} \frac{e^{1/p} \Gamma(1 + \frac{1}{p})^{1+1/p}q^{1/q}}{e^{1/q} \Gamma(1 + \frac{1}{q})\Gamma(\frac{1}{p})^{1/q}p^{1/p}} & \text{if } p < \infty, \\ \frac{(1+q)^{1/q}}{e^{1/q} \Gamma(1 + \frac{1}{q})^{1/q}q^{1/q}} & \text{if } p = \infty. \end{cases} \]

Also, the following problem was posed: What is the asymptotic behavior of
\[\text{Vol}_n(r(n, p)B_p^n \cap t.r(n, q)B_q^n) \]
for $t = A(p, q)^{-1}$? In section 2 it will be proved that in the case $p = \infty$ this limit equals $\frac{1}{2}$—the case $p = \infty$ and $q = 1$ has also been solved by B. Weißbach.

In section 3 we consider a different problem: Let E be a subspace of \mathbb{R}^n of codimension k. M. Meyer and A. Pajor (cf. [MeP]) proved that for all $p \geq 2$ and $p = 1$: $\text{Vol}_{n-k}(E \cap r(n, p)B_p^n) \geq 1$. We will prove this inequality in the case $k = 1$ and $1 < p < 2$.

Received by the editors June 14, 1996 and, in revised form, October 14, 1996.
1991 Mathematics Subject Classification. Primary 52A20.

The author was supported in part by BSF and Erwin Schrödinger Auslandstipendium J0630, J0804.
2. INTERSECTION WITH THE CUBE

Let $0 < q < \infty$ and $t = A(\infty, q)^{-1}$. Define $a(n, q)$ by the equation

$$a(n, q) = \frac{1}{2(1 + q)^{1/q}} \frac{r(n, q)}{n^{1/q}A(\infty, q)}.$$

Using Stirling’s formula it is easily checked that

$$a(n, q) = 1 + \frac{q \log n}{2n} + O\left(\frac{1}{n}\right). \tag{1}$$

Now, let X be uniformly distributed on the interval $[-\frac{1}{2}, \frac{1}{2}]$ and let $X_j, j = 1, \ldots, n$, be independent copies of X. Then

$$\text{Vol}_n \left(\left[-\frac{1}{2}, \frac{1}{2} \right] \cap t r(n, p) B^n_p \right) = 1 - \mathbb{P} \left(\left(\frac{1}{n} \sum_{j=1}^n |X_j|^q \right)^{1/q} > \|X\|_q a(n, q) \right). \tag{2}$$

Theorem 2.1. For all $0 < q < \infty$ we have:

$$\lim_{n \to \infty} \text{Vol}_n \left(\left[-\frac{1}{2}, \frac{1}{2} \right] \cap r(n, q) \frac{A(\infty, q)}{B^n_q} \right) = \frac{1}{2}.$$

Proof. By (1) and simple algebra we conclude that the probability in (2) is given by

$$\mathbb{P} \left(\left(\frac{1}{n} \sum_{j=1}^n |X_j|^q - \mathbb{E}|X|^q \right)^{1/q} > \sqrt{2} \frac{q^2 \log n}{2n} \right) \leq C \left(\frac{\log n}{\sqrt{n}} \right). \tag{3}$$

A version of the Berry-Esseen Theorem (cf. e.g. [C, p. 225]) states that if $Y_j, j = 1, \ldots, n$, is an i.i.d. sequence of random variables such that $\mathbb{E} Y = 0$ and $\|Y\|_3 < \infty$, then there exists an absolute constant C such that for all $s \in \mathbb{R}$:

$$\left| \mathbb{P} \left(\left\|Y\right\|_2 \sqrt{n} \sum_{j=1}^n Y_j < s \right) - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^s e^{-x^2/2} dx \right| \leq C \left(\frac{\|Y\|_3}{\|Y\|_2} \right)^2 \frac{1}{\sqrt{n}}.$$

Applying this theorem to $Y = |X|^q - \mathbb{E}|X|^q$ and

$$s = \frac{\|X\|_3^{q}}{\|Y\|_2} \left(\frac{q^2 \log n}{2 \sqrt{n}} + O \left(\frac{1}{\sqrt{n}} \right) \right) = O \left(\frac{\log n}{\sqrt{n}} \right)$$

we get:

$$\left| \mathbb{P} \left(\left(\frac{1}{n} \sum_{j=1}^n |X_j|^q \right)^{1/q} > \|X\|_q a(n, q) \right) - \frac{1}{2} \right| \leq C \frac{\log n}{\sqrt{n}} + C \frac{1}{\sqrt{n}},$$

which proves the theorem. \qed
3. Central sections of B^n_p

Suppose B is a convex symmetric body in \mathbb{R}^n with $\text{Vol}_n(B) = 1$. It is well-known that there exists an affine image \tilde{B} of B such that the function

$$x \mapsto \int_{\tilde{B}} \langle x, y \rangle^2 dy$$

is constant on S^{n-1}. This constant is called the isotropic constant of B and is denoted by L_B. We also say that B is in isotropic position. It is easy to see that if the standard basis of \mathbb{R}^n is a 1-symmetric basis of B, then B is in isotropic position.

Let $1 \leq p \leq 2$. Then

$$L^2_B = \int_{r(n,p)B^n_p} x^2 dx$$

where as above $r(n,p) = \text{Vol}_n(B^n_p)^{-1/n}$. A direct computation yields:

$$L^2_B = \frac{\Gamma(1 + \frac{n}{p})^2}{12 \Gamma(1 + \frac{n+2}{p}) \Gamma(1 + \frac{1}{p})^3}.$$

Let H be a hyperplane containing the origin. A well known result (cf. e.g. [B1]) states that:

$$\text{Vol}_{n-1}(r(n,p)B^n_p \cap H)L^2_B \geq \frac{1}{\sqrt{12}}.$$

In order to prove $\text{Vol}_{n-1}(\alpha B^n_p \cap H) \geq 1$ it is enough to prove the following inequality:

$$\frac{\Gamma(1 + \frac{n}{p})^2}{12 \Gamma(1 + \frac{n+2}{p}) \Gamma(1 + \frac{1}{p})^3} \leq \frac{\Gamma(1 + \frac{1}{p})^3}{\Gamma(1 + \frac{2}{p})}.$$

By Stirling’s formula we have:

$$\Gamma(1 + z) = \sqrt{2\pi}(1 + z)^{z+\frac{1}{2}}e^{-1-z}\exp(\gamma(z))$$

where γ is a decreasing function on the interval $[0, \infty)$ satisfying $0 < \gamma(z) < (12(z + 1))^{-1}$. Putting $x = p^{-1}$ the inequality (4) can be written equivalently:

$$(2\pi(1 + nx))^{1/n} \frac{1 + nx}{1 + 2x}^{1/2 + (n+2)x} e^{1/n + (1+2/n)\gamma(nx) - \gamma((n+2)x)} \leq 2\pi(1 + x)^{1/2 + 3x} e^{1 + 3\gamma(x) - \gamma(3x)}.$$

Putting $z_n = \frac{2x}{1 + (n+2)x}$ we get

$$\log \left(\frac{1 + nx}{1 + (n + 2)x} \right)^{1/2 + (n+2)x} - \log \left(\frac{1 + x}{1 + 3x} \right)^{1/2 + 3x} = \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{2x}{k + 1} \right) (z_n^k - z_1^k) \leq (2x - 1) \log \left(\frac{1}{1 - z_1} \right).$$

On the other hand we have for all $n \geq 2$ and all $x > 0$:

$$(1 + nx)^{1/n} \leq 1 + x \quad \text{and} \quad 3\gamma(x) - \gamma(3x) - \left(1 + \frac{2}{n} \right) \gamma(nx) + \gamma((n+2)x) \geq 0.$$
Therefore it suffices to prove that for all $\frac{1}{2} \leq x \leq 1$:

$$
\left(\frac{1 + 3x}{1 + x} \right)^{2x-1} \leq \sqrt{2\pi e}
$$

which follows from the fact that the left hand side is bounded by 2. With some modifications the proof given above also yields for all $n \geq 3$:

$$
\frac{\Gamma(1 + \frac{n}{p})^{1+2/n}}{\Gamma(1 + \frac{n+2}{p})} \leq \frac{\Gamma(1 + \frac{2}{p})^2}{\Gamma(1 + \frac{4}{p})}.
$$

Hence we have the following

Proposition 3.1. For all hyperplanes H containing the origin, all $1 < p < 2$ and all $n \geq 2$ we have:

$$
\text{Vol}_{n-1}(r(n,p)B^n_p \cap H) \geq \sqrt{\frac{\Gamma(1 + \frac{4}{p})\Gamma(1 + \frac{1}{p})^3}{\Gamma(1 + \frac{2}{p})^2\Gamma(1 + \frac{3}{p})}} \geq 1.
$$

References

Weizmann Institute of Science, Rehovot, Israel

Mathematisches Seminar, Universität Kiel, Germany

Institut für Mathematik, Universität Linz, Austria

E-mail address: schmucki@caddo.bayou.uni-linz.ac.at

Current address: Institut für Mathematik, J. Kepler Universität, A-4040 Linz, Austria