AN ESTIMATE ON THE DISTORTION
OF THE LOGARITHMIC CAPACITY

MARÍA J. GONZÁLEZ

(Communicated by Linda Keen)

Abstract. Let \(\Gamma \) be a Fuchsian group. We show that the existence of a set
on \(\partial \mathbb{D} \) with no \(\Gamma \)-equivalent points and positive logarithmic capacity does not
imply that \(\Gamma \) is of convergence type.

Let \(\Gamma \) be a Fuchsian group, that is, a discontinuous group of Möbius transfor-
mation of \(\mathbb{D} = \{ z \in \mathbb{R} : |z| < 1 \} \) onto itself.

In [P] Pommerenke asks the following question: If there exists a Borel set on \(\partial \mathbb{D} \)
of positive capacity that contains no \(\Gamma \)-equivalent points, does it follow that \(\Gamma \) is of
convergence type?

The following theorem shows that the answer is NO.

Theorem 1. There exist a Denjoy domain \(\Omega \) and a normal fundamental domain
\(\mathcal{F} \) associated to \(\Omega \) such that

(1) \(\omega(z_0, I, \Omega) \leq c_1 e^{-c_2 \sqrt{\mathcal{F}}} \),

where \(c_1, c_2 \) are universal constants.

Proof. We will construct a Denjoy domain satisfying (a) and (b), but before doing
that need an estimate on harmonic measure.

Suppose \(\Omega \subset \mathbb{R}_+^2 = \{ y > 0 \} \) is a domain bounded by two orthogonal circles of
radius 1 at distance \(\delta \). Denote by \(I \) this interval on \(\mathbb{R} \) of length \(\delta \), which can be
assumed to be centered at 0, i.e., \(I = (-\delta, \delta) \). Let \(z_0 = 2i \) (Figure 1). Then

\[\int_{\gamma_t} \rho \, ds \geq 1. \]
By Hölder’s inequality
\[1 \leq \left(\int_{\gamma_t} \rho^2 \, ds \right) l(\gamma_t), \]
where \(l(\gamma_t) \) denotes the length of \(\gamma_t \). Integrating on \(t \) we get
\[\int \int \rho^2 \, dx \, dy \geq \int_0^1 \left(\int_{\gamma_t} \rho^2 \, ds \right) \, dt \geq \int_0^1 \frac{dt}{l(\gamma_t)}. \]
Since \(l(\gamma_t) \simeq \delta + 2t^2 \), we obtain
\[\int_0^1 \frac{dt}{l(\gamma_t)} \simeq \int_0^1 \frac{dt}{\delta + 2t^2} \simeq \int_0^{\sqrt{\delta}/2} \frac{dt}{2t^2} \simeq \frac{1}{\sqrt{\delta}}. \]
Hence,
\[M(F) = \inf_{\rho \in A(F)} \int \int \rho^2 \, dx \, dy \geq \frac{c}{\sqrt{\delta}}. \]
Therefore, by Beurling’s Theorem
\[\omega(z_0, I, \Omega) \leq c_1 e^{-c_2 M(F)} \leq c_1 e^{-c_2 \frac{1}{\sqrt{\delta}}}, \]
which ends the proof of (1).

Next we consider a Cantor set \(E = \bigcap E_n \subset \mathbb{R} \), where its \(n \)-th approximation \(E_n \) consists of \(2^n \) intervals \(\{I_n\} \) of length \(l_n = e^{-n^2} \) (Figure 2). Then \(E \) has positive capacity if and only if \(\sum 2^{-n} \log \frac{1}{l_n} < \infty \). (See [C, pg. 29].) In this case
\[\sum 2^{-n} \log e^{n^2} = \sum n^2/2^n < \infty, \]
and therefore \(\text{cap}(E) > 0 \).

We are now ready to construct “half” of the fundamental domain, \(\tilde{F} \). To do so we draw orthogonal circles supported on the intervals \([-1, 1] \setminus E \) (Figure 2).

We obtain a normal fundamental domain \(F \) by reflecting \(\tilde{F} \) across the orthogonal circle that contains the points 1 and \(-1\). Note that \(\text{cap}(\partial F \cap \mathbb{R}) > 0 \).

To get the correspondent Denjoy domain \(\Omega \) we send \(\tilde{F} \) conformally onto \(\mathbb{R}_+^2 \). Denote by \(\Phi \) the conformal map so that \(\Phi(i) = \infty \). Then \(\partial \Omega = \Phi(E) \). Besides, \(\partial \Omega \) looks like a “Cantor set” where the length of the intervals at the \(n \)-th stage are less than \(c_1 e^{-c_2 e^n} \) (this is just a consequence of (1)). Therefore \(\text{cap}(\partial \Omega) = 0 \). \(\square \)
REFERENCES

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
E-mail address: gonzalez@mat.uab.es
Current address: Departamento de Matemáticas, CASEM, Universidad de Cádiz, 11519 Puerto Real, Cádiz, Spain
E-mail address: majose.gonzalez@uca.es