Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on Greenberg's conjecture
and the abc conjecture


Author: Humio Ichimura
Journal: Proc. Amer. Math. Soc. 126 (1998), 1315-1320
MSC (1991): Primary 11R23
DOI: https://doi.org/10.1090/S0002-9939-98-04196-3
MathSciNet review: 1443156
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For any totally real number field $k$ and any prime number $p$, Greenberg's conjecture for $(k,p)$ asserts that the Iwasawa invariants $\lambda _p(k)$ and $\mu _p(k)$ are both zero. For a fixed real abelian field $k$, we prove that the conjecture is ``affirmative'' for infinitely many $p$ (which split in $k)$ if we assume the abc conjecture for $k$.


References [Enhancements On Off] (What's this?)

  • [C] J. Coates, $p$-adic $L$-functions and Iwasawa's theory, Algebraic Number Fields (Durham Symposium, 1975; ed. by A. Fröhlich), 269-353, Academic Press, London (1977). MR 57:276
  • [FW] B. Ferrero and L. Washington, The Iwasawa invariant $\mu _p$ vanishes for abelian number fields, Ann. Math., 109 (1979), 377-395. MR 81a:12005
  • [FK] T. Fukuda and K. Komatsu, On $\mathbb Z_p$-extensions of real quadratic fields, J. Math. Soc. Japan, 38 (1986), 95-102. MR 87d:11081
  • [Gi] R. Gillard, Unités cyclotomiques, unités semi-locales et $\mathbb Z_l$-extensions II, Ann. Inst. Fourier, 29 (1979), 1-15. MR 81e:12005b
  • [Gr] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math., 98 (1976), 263-284. MR 53:5529
  • [IS] H. Ichimura and H. Sumida, On the Iwasawa invariants of certain real abelian fields II, International J. Math., 7 (1996), 721-744. CMP 97:03
  • [Iw] K. Iwasawa, On $\mathbb Z_l$-extensions of algebraic number fields, Ann. Math., 98 (1973), 246-326. MR 50:2120
  • [L] S. Lang, Old and new conjectured diophantine inequalities, Bull. AMS, 23 (1990), 37-75. MR 90k:11032
  • [V] P. Vojta, Diophantine Approximations and Value Distribution Theory, Lecture Notes in Math., vol. 1239, Springer-Verlag, Berlin and New York, 1987. MR 91k:11049
  • [W] L. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. no. 83, Springer-Verlag, Berlin and New York, 1982. MR 85g:11001

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 11R23

Retrieve articles in all journals with MSC (1991): 11R23


Additional Information

Humio Ichimura
Affiliation: Department of Mathematics, Yokohama City University, 22-2, Seto, Kanazawa-ku, Yokohama, 236 Japan
Email: ichimura@yokohama-cu.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-98-04196-3
Received by editor(s): June 23, 1996
Received by editor(s) in revised form: October 30, 1996
Additional Notes: The author was partially supported by the Grants-in-Aid for Scientific Research, The Ministry of Education, Science and Culture, Japan.
Communicated by: William W. Adams
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society